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Calculus III Review for EMAG
1. The significant notation difference in cylindrical and spherical coordinates:

I’d like to mention the logic behind diverging some of notations over time. Read this only if you are curious.

In Math courses, we use θ for azimuthal angle and φ for polar angle. In Physics, they use the
opposite. There are two reasons for mathematician choice: 1○ In polar coordinate, you see θ which
is the same Greek letter you used in trigonometry and is familiar. 2○ When finding the Jacobian for
spherical coordinates, this notation in alphabetic order results in positive ρ2 sin(φ) and switching
the order of the angles will create a negative sign which then will be removed by the absolute value
sign. (Silly but as far as I know is true.)

In Math courses, we also use r in cylindrical coordinates but in Physics courses, they use ρ.
1○ You can tell by looking at the two below figures. 2○ In Physics and Electromagnetism, they

prefer using r for the positions vector. In Math we use ~r for position vector instead.

Cylindrical Coordinates

x

y

z

(x, y, z) = (r, θ, z)

r

z

θx

y

Spherical Coordinates

x
y

z

ρ

(x, y, z) = (ρ, θ, φ)

r

z

θ

φ
φ

x

y

ρ cos(φ)
r = ρ sin(φ)

https://www.geogebra.org/m/wmhtgy6r

2. From now on, we use this notation:

Cylindrical Coordinates

x

y

z

ρ

z

φx

y

(x, y, z) = (ρ, φ, z)

• Conversion from cylindrical to Cartesian coordinates:

x = ρ cos(φ) y = ρ sin(φ) z = z

• Conversion from Cartesian to polar coordinates:

ρ2 = x2 + y2 tan (φ) =
y

x
z = z

Spherical Coordinates

x
y

z

r

z

φ

θ
θ

x

y

z = r cos(θ)

(x, y, z) = (r, φ, θ)

• Conversion from spherical to Cartesian:

x = r sin(θ) cos(φ) y = r sin(θ) sin(φ) z = r cos(θ)

• Conversion from Cartesian to spherical:

r =
√
x2 + y2 + z2 tan(φ) =

y

x
cos(θ) =

z√
x2 + y2 + z2

https://www.geogebra.org/m/wmhtgy6r
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3. The base unit vectors in different coordinate Systems:

In physics, many physical phenomena can be explained using symmetries. Cylindrical coordinates
is a major tool for the symmetries around an infinite line and the spherical coordinates is a major
tool for the symmetries around a point.

To use the coordinate tools to the fullest (and expedite the computation process), they use unit
vectors in the direction of increase in φ, r, ρ, θ and z.

Cylindrical Coordinates: The unit vectors
in the direction of increase for ρ, φ and z:

x

y

z

ρ

z

φ
x

y

Q

O

ρ̂

φ̂
ẑ

(x, y, z) = (ρ, φ, z)

• The base vectors in Cartesian Coordinates:

ρ̂ = 〈cos(φ), sin(φ), 0〉 =
x~i + y~j√
x2 + y2

φ̂ = 〈− sin(φ), cos(φ), 0〉 =
−y~i + x~j√
x2 + y2

ẑ = 〈0, 0, 1〉 = ~k

• You can easily see the properties:

ρ̂ · ρ̂ = 1 φ̂ · φ̂ = 1 ẑ · ẑ = 1

ρ̂ · φ̂ = 0 φ̂ · ẑ = 0 ρ̂ · ẑ = 0

ρ̂× φ̂ = ẑ φ̂× ẑ = ρ̂ ẑ × ρ̂ = φ̂

ẑ
ρ̂

φ̂

• Use the above to understand the geometry,
e.g. ρ̂||

−→
OQ, φ̂ ⊥

−→
OQ, φ̂||xy-plane .

• Note that ρ̂ and φ̂ depend on the point:

x

y

z

ρ

z
φ

x

yO
ρ̂

φ̂
ẑ

(x, y, z) = (ρ, φ, z)

Link

Spherical Coordinates:

The unit vectors in ρ, φ and θ directions

x

y

z

r

r

z

φ

θ θ

x

y

z = r cos(θ)

φ̂
r̂

θ̂

Q

O

P (x, y, z) = (r, θ, φ)
P

• The base vectors in Cartesian Coordinates:
r̂ = 〈sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)〉= x~i + y~j + z~k

r

θ̂ = 〈cos(θ) cos(φ), cos(θ) sin(φ), − sin(θ)〉

φ̂ = 〈− sin(φ), cos(φ), 0〉 =
−y~i + x~j√
x2 + y2

• You can easily see the properties:

r̂ · r̂ = 1 φ̂ · φ̂ = 1 θ̂ · θ̂ = 1

r̂ · φ̂ = 0 φ̂ · θ̂ = 0 r̂ · θ̂ = 0

r̂× θ̂ = φ̂ θ̂ × φ̂ = r̂ φ̂× r̂ = θ̂

φ̂
r̂

θ̂

• Use the above to understand the geometry,
e.g. r̂||

−→
OP, φ̂ ⊥

−→
OP, φ̂||xy-plane .

• Note that r̂, φ̂ and θ̂ depend on the point:

x

y

z

r

z
φ

θ

θ

x

y

z = r cos(θ)

φ̂

r̂

θ̂
O

P (x, y, z) = (r, θ, φ)

Link

2

https://www.geogebra.org/m/z32aeh6w
https://www.geogebra.org/m/cfybupr4
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4. Conversion of vector fields from Cartesian to cylindrical or spherical coordinates

(i) First convert ~i, ~j, and ~k using these formulas:

Cylindrical:

~i =
xρ̂− yφ̂√
x2 + y2

~j =
yρ̂+ xφ̂√
x2 + y2

~k = ẑ

Spherical:

~i =
x
(√

x2 + y2r̂ + zθ̂
)
− y
√
x2 + y2 + z2φ̂√

x2 + y2
√
x2 + y2 + z2

~j =
y
(√

x2 + y2r̂ + zθ̂
)

+ x
√
x2 + y2 + z2φ̂√

x2 + y2
√
x2 + y2 + z2

~k =
zr̂−

√
x2 + y2θ̂√

x2 + y2 + z2

(ii) Then convert x, y and z using these formulas:

Cylindrical:
x = ρ cos(φ)
y = ρ sin(φ)
z = z

Spherical:
x = r sin(θ) cos(φ)
y = r sin(θ) sin(φ)
z = r cos(θ)

(iii) Last, use algebra to find each component in the directions of r̂, ρ̂, θ̂, φ̂, and ẑ.

Example 1: Convert ~F(x, y, z) = 5xz~j to spherical presentation.

Solution:

(i) 5xz~j = 5xz
y
(√

x2 + y2r̂ + zθ̂
)

+ x
√
x2 + y2 + z2φ̂√

x2 + y2
√
x2 + y2 + z2

(ii)

= 5(r sin(θ) cos(φ))(r cos(θ))
r sin(θ) sin(φ)(r sin(θ)r̂ + r cos(θ)θ̂) + r sin(θ) cos(φ)rφ̂

r sin(θ)r
= 5r2 sin2(θ) cos(θ) sin(φ) cos(φ)︸ ︷︷ ︸

Fr

r̂ + 5r2 sin(θ) cos(θ) cos2(φ)︸ ︷︷ ︸
Fθ

θ̂ + 5r2 sin(θ) cos(θ) cos2(φ)︸ ︷︷ ︸
Fφ

φ̂

5

2
r2 sin2(θ) cos(θ) sin(2φ)r̂ +

5

2
r2 sin(2θ)

1 + cos(2θ)

2
θ̂ +

5

2
sin(2θ)

1 + cos(2θ)

2
r2φ̂

Example 2: Convert ~F(x, y, z) = 5x~i to cylindrical presentation.

Solution:

=
(i)

5x xρ̂−yφ̂√
x2+y2

=
(ii)

5ρ cos(φ)ρ cos(φ)ρ̂−ρ sin(φ)φ̂
ρ

=
(iii)

5ρ cos2(φ)︸ ︷︷ ︸
Fρ

ρ̂− 2.5ρ sin(2φ)︸ ︷︷ ︸
Fφ

φ̂

3
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5. Components of the vector fields in cylindrical and spherical coordinates:

Since vectors {ρ̂, φ̂, ẑ} are mutually orthogonal unit vectors,1 we can express any vector fields in
terms of the vector field’s component in the direction of the unit vectors. That is, we can write

~F = Fρρ̂+ Fφφ̂+ Fzẑ

The same is true for any vector field’s components in the directions (r̂, θ̂, φ̂).

~F = Frr̂ + Fθθ̂ + Fφφ̂.

6. Divergence, Gradient, and Curl in cylindrical coordinates:

Divergence: ∇ · ~F =
1

ρ

∂ (ρFρ)

∂ρ
+

1

ρ

∂Fφ
∂φ

+
∂Fz
∂z

Gradient: ∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂φ
φ̂+

∂f

∂z
ẑ

Curl: ∇× ~F =
1

ρ

∣∣∣∣∣∣∣∣
ρ̂ ρφ̂ ẑ
∂
∂ρ

∂
∂φ

∂
∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣∣
=

(
1

ρ

∂Fz
∂φ
− ∂Fφ

∂z

)
ρ̂+

(
∂Fρ
∂z
− ∂Fz

∂ρ

)
φ̂+

1

ρ

(
∂ (ρFφ)

∂ρ
− ∂Fρ

∂φ

)
ẑ

7. Divergence, Gradient, and Curl in spherical coordinates:

Divergence: ∇ · ~F =
1

r2

∂ (r2Fr)

∂r
+

1

r sin θ

∂

∂θ
(Fθ sin θ) +

1

r sin θ

∂Fφ
∂φ

Gradient: ∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂

Curl:

∇× ~F =
1

r sin θ

(
∂

∂θ
(Fφ sin θ)− ∂Fθ

∂ϕ

)
r̂ +

1

r

(
1

sin θ

∂Fr
∂ϕ
− ∂

∂r
(rFϕ)

)
θ̂ +

1

r

(
∂

∂r
(rFθ)−

∂Fr
∂θ

)
φ̂

8. Physical properties of Div., Grad. and Curl:

Gradient of a vector field: Let f(x, y, z) be a scalar-valued function. Its gradient is a vector
field:

~F = ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

• The function f is called a (scalar) potential function for ~F.

• A vector field is called conservative if it has a potential function,

1This ensures that the three vectors are a basis for the vector space around the point. Refer to your linear algebra course
for the definition of basis.

4
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x

y

Conservative fields occur naturally in physics, as force fields in which energy is conserved.

Example 1: Consider the scalar function f(x, y, z) =
−k√

x2 + y2 + z2
.

(A) Find the gradient of f(x, y, z).

(B) Express the gradient in spherical coordinate notation and in terms of spherical unit vectors
{r̂, φ̂, θ̂}.

(C) What is the potential function for ∇f?

Solution:

(A) ∇f = 〈 kx

(x2 + y2 + z2)3/2
,

ky

(x2 + y2 + z2)3/2
,

kz

(x2 + y2 + z2)3/2
〉

(B)

∇f =
〈x, y, z〉
r3

=
k〈r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)〉

r3

=
k〈sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)〉

r2

=
kr̂

r2

(C) h(x, y, z) =
−k√

x2 + y2 + z2
+ C

If ~F = ∇f is a conservative vector field, then at all points P the vector ~F(P ) is orthogonal to the
level curve of the potential function f .

Divergence of a vector field:

The divergence of a vector field ~F at a point P
measures how much ~F disperses “stuff” near P .
Div(~F) is a scalar function. div(~F) > 0

(disperses stuff)
div(~F) < 0

(attracts stuff)
div(~F) = 0

(“incompressible”)
div(~F) > 0

5
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Example 2:

Compute the divergent of ~F = 〈x, y, z〉.
Solution:

div(~F) =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 1 + 1 + 1 = 3.

This answer does not change in different coordinates.

Curl of a vector field: The curl of a vector field ~F measures how ~F causes objects to rotate.

Example 3: The current in a river is stronger
near the banks than in the middle. A boat is
anchored near the right bank. What happens to
the boat? It rotates counterclockwise. x

y

Curl(~F) > 0 is a vector field stick-
ing out of the page toward us.

Example 4: In the figure to the left, you can see
that ~F = 〈z, 0,−x〉 is rotating and the curl(~F) is
a vector field that follows right hand rule. Com-
pute the ∇× ~F.

Solution:
∇× ~F = 〈0, 2, 0〉

yx

z

~F

curl(~F)

9. A few properties:

∇× (∇f) = ~0 or curl of gradient is zero.

∇ · (∇× ~F) = 0 or divergence of the curl is zero.

6
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10. Line Integral Review:

P = ~r(a)

Q = ~r(b)~T~T~T~T~T~T

~T

~F
~F · ~T is the length of

the projection of ~F

along ~T

Let ~F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 be a vector field
and C a curve parametrized by ~r (t) = 〈x(t), y(t), z(t)〉 for [a, b].
There are many different ways to write the line integral in Calculus
III:

• Vector Differential Form:

ˆ
C
~F · d~r =

ˆ
C
~F · ~T ds

• Parametric Vector Evaluation:

ˆ b
a

~F
(
x(t), y(t), z(t)

)
·~r ′(t) dt

• Parametric Scalar Evaluation:

ˆ b

a
(P (x(t), y(t), z(t))x

′
(t)+Q(x(t), y(t), z(t))y

′
(t)+R(x(t), y(t), z(t))z

′
(t))dt

• Scalar Differential Form:

ˆ
C
P dx+Qdy +Rdz

Use slightly different notation
´
C
~F · d~l or for the contour integral

˛
C
~F · d~l

Example 1:

In Electromagnetism, you write

ˆ
Pdx+Qdy +Rdz as

ˆ
〈P,Q,R〉 · 〈dx, dy, dz〉

=

ˆ
~F · (dx~i + dy~j + dz~k)︸ ︷︷ ︸

Remember this d~l.

In Electromagnetism his notation is mostly used when two of the x, y, z-components are constant.
For example, the line element for a line perpendicular to xy-plane, d~l = dz~k. In Calculus III, we
used this notation for parametrized curves.

Example 2: A circle in the plane z =constant, centered at (0, 0, c) with radius r, is shown below.

The circle can be parameterized as ~r(t) = 〈r cos(t), r sin(t), c〉.

x y

z

c

In Calculus III, we find ~r′(t) = 〈−r sin(t), r cos(t), 0〉 and therefore d~r = 〈−r sin(t), r cos(t), 0〉 dt.

Then we compute

ˆ 2π

0

~F(~r(t)) · 〈−r sin(t), r cos(t), 0〉 dt.

In Electromagnetism, we parametrize the circle using the cylindrical coordinates notation,
~l(φ) = 〈ρ cos(φ), ρ sin(φ), c〉. Now the line element in Cartesian base is:

d~l(φ) = 〈−ρ sin(φ), ρ cos(φ), 0〉 dφ
= (−ρ sin(φ)~i + ρ cos(φ)~j) dφ︸ ︷︷ ︸

Remember this one.

Thenˆ 2π

0

~F(~l(φ)) · (−ρ sin(φ)~i + ρ cos(φ)~j) dφ

Now for c = 2 and ρ = 3, d~l = (−3 sin(φ)~i + 3 cos(φ)~j)dφ. This line element is useful for certain
vector fields.

7
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Example 3: Express the line element in Example 1 using cylindrical base vectors.

d~l = (−ρ sin(φ)
xρ̂− yφ̂√
x2 + y2︸ ︷︷ ︸
~i

+ ρ cos(φ)
yρ̂+ xφ̂√
x2 + y2︸ ︷︷ ︸
~j

) dφ

= (−ρ sin(φ)
ρ cos(φ)ρ̂− ρ sin(φ)φ̂

ρ
+ ρ cos(φ)

ρ sin(φ)ρ̂+ ρ cos(φ)φ̂

ρ
) dφ

= (−ρ sin(φ) cos(φ)ρ̂+ ρ sin2(φ)φ̂+ ρ cos(φ) sin(φ)ρ̂+ ρ cos2(φ)φ̂) dφ

= (ρdφ) φ̂︸ ︷︷ ︸
Remember this d~l.

Example 4:

This problem does not need Calculus III to solve but the problem contains the words “line” and
“integral” so people wonder. This problem is one of the cases that Columbus Law can be used to
evaluate electrical field in closed form (not numerically). Let infinite line l have a uniform charge
distribution, ρl and point P be a point outside of the line with distance ρ form the line. We use
Columbus law for each point charge on the line and we integrate to find the accumulative electric
field exerted by those charges at the point P .

d

d

Q

‖~EQ‖ =
ρl

4πε0d2

‖z‖

Q′

‖~EQ′‖ =
ρl

4πε0d2

‖z‖
ρ

P

Note that the electric field exerted by point
charge Q, ~EQ decomposes into two component in
unit direction perpendicular to the line pointed
outward, ρ̂, denoted by ~EQρ̂ and in unit direction
parallel to the line pointed upward, ẑ, denoted by
~EQẑ:

d =
√
ρ2 + z2

Q

~EQ

~EQ,ρ̂ =
ρlρ

4πε0d3
ρ̂

~EQ,ẑ =
−ρlz

4πε0d3
ẑ

z

0 ρ
P

d

d

Q

~EQ

~EQ,ρ̂

~EQ,ẑ

‖z‖

Q′

~EQ′

~EQ′,ρ̂

~EQ′,ẑ

‖z‖

ρ
P

ˆ ∞
−∞

~EQẑdz =

ˆ ∞
−∞

−ρlz
4πε0d3

ẑdz

ẑ does not change w.r.t. z:

= ẑ

ˆ ∞
−∞

(
−ρlz

4πε0(ρ2 + z2)3/2

)
dz

= 0 Because the integrand is odd.

ˆ ∞
−∞

~EQρ̂dz =

ˆ ∞
−∞

ρlρ

4πε0d3
ρ̂dz

ρ̂ does not change w.r.t. z:

= ρ̂

ˆ ∞
−∞

(
ρl

4πε0(ρ2 + z2)3/2

)
dz

= ρ̂ lim
b→∞,c→∞

(
ρlz

4πε0ρ2(ρ2 + z2)1/2

) ∣∣∣∣z=c
z=−b

=
ρl

2πε0ρ
ρ̂

Finally, ~E =

ˆ ∞
−∞

~EQρ̂dz +

ˆ ∞
−∞

~EQẑdz =
ρl

2πε0ρ
ρ̂

8
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11. Vector Surface Integrals:

A brief review from Calculus III:

In Calculus 3, we learn how to parametrize general surfaces and find the surface elements. In
Electromagnetism, the parametrization of cube, cylinder and sphere are some of the most important
ones. So we learn the surface elements for those.

u

v

a

b

(a, b)

~G(u, v)

x

y

z
Curve ~G(a, v)

Curve ~G(u, b)

~G(a, b)

Normal vector: ~N(a, b) = ~Gu(a, b)× ~Gv(a, b)

Unit normal vector: ~n(a, b) =
~N(a,b)

‖~N(a,b)‖

The parametrization ~G is regular if ~n is well-defined (~N 6= ~0 always). If a surface has a regular
and smooth, then the surface is orientable.

Let S be an oriented surface with normal vector
~n, and let ~F be a vector field.

The normal component of ~F with respect to
S is ~F · ~n.

This is a scalar-valued function on S that mea-
sures the extent to which ~F is flowing through S
in the direction of ~n.

If ~F is a continuous vector field defined on an ori-
ented surface S with unit normal vector ~n, then
the vector surface integral of ~F over S is¨

S

~F · d~S =

¨
S

~F · ~n dS

The integral is also called the flux of ~F across S.

x

y

z

~F

~n
θ

Normal

Component

of ~F

If S has a regular parametrization ~G(u, v) over R, then¨
S

~F · d~S =

¨
S

~F · ~n dS

=

¨
R

~F
(
~G(u, v)

)
·
~Gu × ~Gv

‖~Gu × ~Gv‖
‖~Gu × ~Gv‖ dA

=

¨
R

~F
(
~G(u, v)

)
· (~Gu × ~Gv) dA

=

¨
R

~F
(
~G(u, v)

)
· ~N dA

We often call ~NdA the Surface element. Other ways to express a surface elemnt are:
~N du dv = ~N dv du = ‖~N‖~n du dv = ‖~N‖~n dv du = ‖~Gu × ~Gv‖~n du dv

9
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12. Cartesian Coordinates

Parametrize a rectangle parallel to yz-plane:

~G(y, z) = 〈x, y, z〉 y ∈ [a, b], z ∈ [c, d]
~Gy(y, z) = 〈0, 1, 0〉
~Gz(y, z) = 〈0, 0, 1〉

~N = ~Gy × ~Gz = 〈1, 0, 0〉 = ~i

y
x

z

~n

Parametrize a rectangle parallel to xz-plane:

~G(x, z) = 〈x, y, z〉 x ∈ [a, b], z ∈ [c, d]
~Gx(x, z) = 〈1, 0, 0〉
~Gz(x, z) = 〈0, 0, 1〉

~N = ~Gx × ~Gz = 〈0, 1, 0〉 = ~j

y
x

z

~n

Parametrize a rectangle parallel to xy-plane:

~G(x, y) = 〈x, y, z〉 x ∈ [a, b], y ∈ [c, d]
~Gy(x, y) = 〈0, 1, 0〉
~Gz(x, y) = 〈1, 0, 0〉

~N = ~Gx × ~Gy = 〈0, 0, 1〉 = ~k

y
x

z ~n

13. Cylindrical Coordinates

Parametrize the cylindrical shell centered about z-axis, ρ =constant:

~G(φ, z) = 〈ρ cos(φ), ρ sin(φ), z〉 φ ∈ [0, 2π]
~Gφ(φ, z) = 〈−ρ sin(φ), ρ cos(φ), 0〉
~Gz(φ, z) = 〈0, 0, 1〉

~N = ~Gφ × ~Gz = 〈ρ cos(φ), ρ sin(φ), 0〉 = ρρ̂
x

y

z

~n

Parametrize the disk centered about z-axis in plane z =constant:

~G(ρ, φ) = 〈ρ cos(φ), ρ sin(φ), z〉 φ ∈ [0, 2π]
~Gρ(ρ, φ) = 〈cos(φ), sin(φ), 0〉
~Gφ(ρ, φ) = 〈−ρ sin(φ), ρ cos(φ), 0〉

~N = ~Gρ × ~Gφ = 〈0, 0, ρ〉 = ρẑ x

y

z
~n

Parametrize the rectangle bisected by z-axis, φ =constant:

~G(ρ, z) = 〈ρ cos(φ), ρ sin(φ), z〉
~Gz(ρ, z) = 〈0, 0, 1〉
~Gρ(ρ, z) = 〈cos(φ), sin(φ), 0〉

~N = ~Gz × ~Gρ = 〈− sin(φ), cos(φ), 0〉 = φ̂

x

y
~n

z

10
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Spherical coordinates

Parametrize sphere centered about origin, r =constant:

~G(φ, θ) = 〈r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)〉 , θ ∈ [0, π], φ ∈ [0, 2π]
~Gθ = 〈r cos(θ) cos(φ), r cos(θ) sin(φ), −r sin(θ)〉
~Gφ = 〈−r sin(θ) sin(φ), r sin(θ) cos(φ), 0〉

~N = ~Gθ × ~Gφ =
〈
r2 sin2(θ) cos(φ), r2 sin2(θ) sin(φ), r2 sin(θ) cos(θ)

〉
= r2 sin(θ)r̂

Parametrize disk centered about origin in plane φ =constant:

~G(r, φ) = 〈r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)〉 , r ∈ [0, c], θ ∈ [0, π]
~Gr = 〈sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)〉
~Gφ = 〈r cos(θ) cos(φ), r cos(θ) sin(φ), −r sin(θ)〉

~N = ~Gφ × ~Gr = 〈−r sin(φ), r cos(φ), 0〉 = rφ̂

y

z

~n

x

Parametrize cone/disk centered about z-axis/origin, θ =constant:

~G(r, θ) = 〈r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)〉 , r ∈ [0, c], φ ∈ [0, 2π]
~Gθ = 〈r cos(θ) cos(φ), r cos(θ) sin(φ), −r sin(θ)〉
~Gr = 〈sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)〉

~N = ~Gφ × ~Gr =
〈
r sin(θ) cos(θ) cos(φ), r sin(θ) cos(θ) sin(φ), −r sin2(θ)

〉
= r sin(θ) θ̂

x
y

z

~n

Example: Find the flux of the vector field ~F(x, y, z) = 〈z, y, x〉 across the unit sphere
x2 + y2 + z2 = 1, oriented outward.

y

x

z

~n

Solution:
Parametrize the unit sphere as usual:

The surface element: 12 sin(θ) dθd φ r̂ = sin(θ) dθd φr̂
~N = sin(θ) r̂

OR ~N = ~Gθ × ~Gφ = sin(θ) 〈sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)〉
~F(~G(θ, φ)) = 〈cos(θ), sin(θ) sin(φ), sin(θ) cos(φ)〉

Then compute the vector surface integral:
¨
S
~F · d~S =

¨
R
~F ·
(
~Gθ × ~Gφ

)
dA

=

ˆ 2π

0

ˆ π

0

[
2 sin2(θ) cos(θ) cos(φ) + sin3(θ) sin2(φ)

]
dθ dφ

= π

ˆ π

0
sin3(θ) dθ =

4π

3

11
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14. Electromagnetism and surface elements:

In Electromagnetism, since certain surfaces are used frequently, the surface elements for those sur-
faces need to be memorized. This is usually done using surfaces of a volume element. Note that ~n
in these cases are ~i,~j, ~k, r̂, φ̂, θ̂, ρ̂, ẑ.

Cartesian:

y

x

z

d~S~i = dy dz~i

d~S~j = dx dz~j

d~S~k = dx dy ~k

Cylindrical:

y

x

z

d~Sφ̂ = dρ dz φ̂

d~Sρ̂ = ρ dφ dz ρ̂

d~Sẑ = ρdφ dρ ẑ

Spherical:

y

x

z

d~Sφ̂ = r dr dθ φ̂

d~Sr̂ = r2 sin(θ)dθ dφ r̂

d~Sθ̂ = r sin(θ)dφ dr θ̂

Example: Compute the flux of vector field ~F(r, φ, z) = ρ̂ through each of the following surfaces in
direction ~n shown in each figure.

(A) The surface inside the rectangle φ =
π

4
,

0 ≤ z ≤ 2 and ρ = 2.

x

y
~n = φ̂

z

Solution:
ρ̂ and φ̂ are perpendicular to each other so
the flux is zero.

(B) The surface of the disk z = 2 and ρ = 3.

x

y

z
~n = ẑ

Solution:
ẑ and ρ̂ are perpendicular to each other so the
flux is zero.

(C) The surface of cylinder ρ = 3 and 0 ≤ z ≤ 4.

x
y

z

~n = ρ̂

Solution:
The flux is computed as¨
S
ρ̂ · d~S

=

ˆ 4

0

ˆ 2π

0

ρ̂ · ρ
↑4
ρ̂ dφ dz ρ is constant.

=

ˆ 3

0

dz

ˆ 2π

0

4 dρ = 24π

12
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15. Stokes’ Theorem Let S be an oriented surface with smooth, simple closed boundary curves. Let
~F be a vector field whose components have continuous partial derivatives. Then

˛
∂S

~F · d~r =

¨
S

Curl(~F) · d~S

where the components of ∂S are oriented using a right-hand-rule orientation.

Curl and Circulation in Green and Stokes Green’s and Stokes’ Theorems both say that if a
vector field pushes stuff (counter)clockwise around the boundary of a surface R2, then it rotates
stuff (counter)clockwise in the surface itself.

Another way to define curl is using the Stokes’
Theorem on an infinitesimal area:

lim
area(S)→0

˛
∂S

~F · d~r = lim
area(S)→0

¨
S

Curl(~F) · d~S

Curl(~F) · ~n = lim
area(S)→0

˛
∂S

~F · d~r

S x

y

z

		
	
	
			

		
	
	
			

		
	
	
			

		
	
	
			

		
	
	
			

		
	
	
			

		
	
	
			

Example: Find the circulation of ~F (x, y, z) = 〈y2,−y, 3z2〉 through the ellipse formed from 2x +
6y − 3z = 6 intersecting x2 + y2 = 1, oriented counterclockwise as viewed from above.

D

2x + 6y − z = 6

z

S C

x

y

Solution:

Parametrize the surface of z =
2

3
x+ 2y − 2 inside the ellipse with an upwards orientation:

~G (r, θ) =

〈
r cos(θ), r sin(θ),

2

3
r cos(θ) + 2r sin(θ)− 2

〉
~Gr × ~Gθ =

〈
−2r

3
,−2r, r

〉
Using Stokes’ Theorem,

ˆ
∂S

~F · d~r =

¨
S
curl

(
~F
)
· d~S =

¨
S
〈0, 0,−2y〉 · d~S

=

ˆ 2π

0

ˆ 1

0

−2r2 sin(θ) dr dθ = 0

13
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16. The Divergence Theorem Let S be a closed surface that encloses a solid W in R3. Assume
that S is piecewise smooth and is oriented by normal vectors pointing outsideW . Let ~F be a vector
field whose domain contains W . Then:‹

S

~F · d~S =

˚
W

Div(~F) dV.

Example 1: Find the outward flux of ~F = ρ̂ through the surface of closed cylindrical solid ρ = 3
and 0 ≤ z ≤ 4.

x
y

~n3 = −ẑ

z ~n1 = ẑ

~n2 = ρ̂

Solution:

Method 1:

The Divergence Theorem can be find outward
flux of ~F through the surface of a solid:

Div(~F) =
1

ρ

∂ρ(1)

∂ρ
=

1

ρ

Compute the volume integral:¨
S

1

ρ
dV =

ˆ 3

0

ˆ 2π

0

ˆ 4

0

1

ρ
ρ dρ dφ dz

= 24π

Method 2:
Comparing the result from Divergence Theorem and
the direct computation:
The flux can be computed directly as the sum of
the outward flux thought the wall and the top and
the bottom surfaces. Since the normal vector to the
top and bottom surfaces are perpendicular to the vec-
tor field, the flux through those two surfaces is zero
and the flux through the wall is:

=

¨
S
ρ̂ · d~S

=

ˆ 4

0

ˆ 2π

0

ρ̂ · ρ
↑4
ρ̂ dφ dz ρ is constant.

=

ˆ 3

0

dz

ˆ 2π

0

4 dρ = 24π

Example 2: Find the flux of ~F (x, y, z) = 〈x2y, xy2, 2xyz〉 outward through the surface of solid
bounded by the paraboloid z = x2 + y2 and the plane z = 4.

x y
(0, 0, 0)

(0, 0, 4)

z = x2 + y2

z

Solution:
Using the Divergence Theorem,¨
S

~F · d~S =

˚
T
div
(
~F
)
dV =

˚
T

6xy dV

=

ˆ 2π

0

ˆ 2

0

ˆ 4

r2

6r2 cos(θ) sin(θ) r dz dr dθ = 0

14


