Analog Devices and Measurements

Topics
- Current Measurements
- Voltage Measurements
- Resistance Measurements

References

Analog Devices and Measurements

Introduction
- Information
 - Transferred between stages of measurement system
 - As an analog electrical signal
 - Originates from measurement of a physical variable
 - Using fundamental electromagnetic or electrical phenomenon
 - Propagates from stage to stage
- Analog devices
 - Supplanted by digital equivalents in many applications
 - Still widely used in engineering devices
 - Many systems analog and digital hybrids

Sub-Topics
- Direct Current (DC)
- Alternating Current (AC)

Current Measurements

Direct Current
- Measuring a DC electrical current
 - Analog device that responds to force
 - Exerted on a current-carrying conductor in a magnetic field
 - Force to move a pointer on a display
- D’Arsonval movement
 - Uniform radial magnetic field
 - Steady angular deflection
 - Corresponds to current through coil
- Galvanometer
 - Highly sensitive D’Arsonval movement (0.1 μA per division)
 - Calibrated about zero current
 - Deflect to plus or minus direction

![Basic D’Arsonval meter movement](image-url)
Current Measurements

Alternating Current
- Measuring an AC current
 - Use diodes
 - Convert into DC current
 - Use a calibrated D’Arsonval movement meter
- Large AC current
 - Probe over wire (conductor)
 - Use of Hall effect—Voltage developed from
 - Current-carrying conductor perpendicular to magnetic field
 - Unknown current => generate magnetic field => develops a measurable voltage across a Hall-effect sensor
 - Hall effect probe—iron-core ring placed around a wire

Voltage Measurements

Sub-Topics
- Analog Voltage Meters
- Oscilloscope
- Potentiometer

Introduction
- Measuring static or dynamic voltage signals
- Can range over several orders of magnitude
- Wide variety of measurement systems

Analog Voltage Meters
- Analog voltage dials
- Volt-ohmmeters (VOMs)
- Using D’Arsonval movement
- In series with a fixed resistor for range selection

Oscilloscope
- Oscilloscope—Graphical display device providing analog representation of a measured signal
- Voltage magnitude versus time for a dynamic signal
- Megahertz range
- Some with gigahertz
- Visual output of signal
 - Magnitude
 - Frequency
 - Distortion
 - Delineation of DC and AC components
Voltage Measurements

Oscilloscope

- In addition to signal versus time
 - Two or more signals
 - Perform addition and subtraction of signals
 - Display amplitude versus amplitude
- Cathode ray oscilloscope
 - Not common
- Digital oscilloscope
 - Convert signal to digital form
 - Reconstruct signal on LCD display

Digital oscilloscope

Voltage Measurements

Potentiometer

- Potentiometer—Device to measure DC voltages
- Microvolt to millivolt range
- Balances an unknown voltage against a known internal voltage

Oscilloscope output

Resistance Measurements

Sub-Topics

- Ohmmeter Circuits
- Bridge Circuits

Resistance Measurements

Introduction

- Resistance measurements to determine simple continuity
- Changes in resistance: order of 10^{-6} Ω
- Absolute resistance: 10^{-6} to 10^{15} Ω
- Working principle of many transducers: a change in resistance relative to a change in measured variable
Resistance Measurements
Ohmmeter Circuits

- Imposing a voltage across the unknown resistance and measuring the current flow
- Ohm's law: \(R = \frac{E}{I} \)
- Limit imposed by ability to dissipate the power
- Heating: \(I^2R \)
- Principle for fuses: Large value of current melts the fuse

Resistance Measurements
Bridge Circuits

- Bridge circuit
 - A type of electrical circuit
 - Two circuit branches bridged by a third branch
 - At some intermediate point along them
- Applications in instrumentation, filtering, power conversion
- Wheatstone bridge
 - Well-known bridge circuit
 - Means for accurately measuring resistance

Resistance Measurements
Bridge Circuits

- Four resistors
 - An unknown value: \(R_1 \)
 - One adjustable: \(R_2 \)
 - Two fixed: \(R_3 \) and \(R_4 \)
- A DC voltage is applied as an input
- Variable resistor is adjusted until the bridge is balanced
- Value of unknown resistor is calculated

Resistance Measurements
Bridge Circuits

- Balance condition: \(I_2 = 0 \)
- No voltage drop from B to C: \(I_1R_1 - I_2R_2 = 0 \) \(I_1R_1 - I_2R_2 = 0 \)
- Currents through are equal: \(I_1 = I_2 = I_3 = I_4 \)
- Relationship among resistances: \(\frac{R_2}{R_3} = \frac{R_4}{R_5} \)

Resistance Measurements
Bridge Circuits

- Resistance change measured two ways
 - Adjusted to null circuit and determine resistance
 - Use voltage measuring device to measure voltage unbalance
- Balancing operation accomplished
 - Manually
 - Automatically (closed-loop controller circuit)
- Advantages
 - Input voltage need not to be known
 - Changes in the input voltage do not affect accuracy
 - Current detector need only detect if there is a flow
 - Not measure value
Example: A temperature sensor is connected in a Wheatstone bridge, with sensor in the R_1 location, and R_2 is a calibrated variable resistance. Fixed resistances of R_3 and R_4 are 500 Ω. The bridge is balanced. If temperature sensor has resistance of 100 Ω, determine the value of R_2.

$$\frac{R_2}{R_1} = \frac{R_3}{R_4}$$
$$R_2 = \frac{R_3 R_4}{R_1}$$
$$R_2 = 100 \ \Omega$$