Strain Measurements

Topics

- Stress and Strain
- Resistance Strain Gauges
- Strain Gauge Electrical Circuits
- Apparent Strain and Temperature Compensation
- Optical Strain Measuring Techniques

Strain Measurements

References

Strain Measurements

Introduction

- Load carrying components for machines and structures requires information about distribution of forces
- Fundamental behavior of load-carrying parts
- An object subject to load
 - Safe level of stress
 - Forces within the object balance the external loads
- A rod placed in uniaxial tension
 - A force within the material to maintain static equilibrium
- Stress—Force per unit area
- Measuring stress directly usually not possible
 - Measuring the change in length or shape of a material

Stress and Strain

Sub-Topics

- Lateral Strains
Stress and Strain
Introduction

- Experimental analysis of stress
 - Measuring deformation of a part under load
 - Inferring the existing state of stress from the measured deflections
- Cross sectional area: A_c
- Tension force normal to the area: F_N
- Normal stress
 $$\sigma_a = \frac{F_N}{A_c}$$
- Original unloaded length: L
- Axial strain—Ratio of change in length to the original length
 $$\varepsilon_a = \frac{\delta L}{L}$$

Free-body diagram illustrating internal forces for a rod in uniaxial tension
Stress and Strain
Introduction

- For most engineering material strain is small
 - Units of 10^{-6} m/m or 10^{-6} in/in
 - Dimensionless unit of microstrain μs
- Stress-strain diagrams
 - Important in understanding behavior of material under load
 - Linear relationship for loads less than that required to permanently deform
- Modulus of elasticity (Young’s modulus): E_m
- Elastic region—Range where the relationship is linear
 \[\sigma_a = E_m \varepsilon_a \]
 - Relationship is Hook’s law

A typical stress–strain curve for mild steel
Stress and Strain
Introduction

- Stress levels designed to remain well below the elastic limit for most components
- Linear relationship holds

Stress and Strain
Lateral Strains

- Rod stretched in axial direction
 - Cross-sectional area must decrease
 - Conservation of mass
- Rod compressed in axial direction
 - Cross-sectional area must increase
- Lateral (transverse) strain—Change in cross-sectional area
 - Ratio of change in diameter to original diameter for the rod
 \[\nu_p = \frac{|lateral\ strain|}{|axial\ strain|} = \frac{\varepsilon_L}{\varepsilon_a} \]
 - Poisson's ratio
- Components subject to loading in more than one dimension
- Relationships generalized to multi-dimensional cases
Stress and Strain
Lateral Strains

Biaxial state of stress

Resistance Strain Gauges
Sub-Topics

- Metallic Gauges
- Strain Gauge Construction and Bonding
- Semiconductor Strain Gauges
Resistance Strain Gauges

Introduction

- Measurement of small displacements in a material or object under mechanical load
 - Determines strain
 - As simple as change in distance between two scribe marks
 - As advanced as optical holography
- The ideal sensor for strain measurement
 - Good spatial resolution
 - Unaffected by changes in ambient conditions
 - High frequency response (dynamic measurements)
- Bounded resistance strain gauge meets these requirements
 - Resistance changes when deformed
 - Both metallic and semiconductor materials

Resistance Strain Gauges

Metallic Gauges

- Cross-sectional area: A_c
- Length: L
- Electrical resistivity: ρ_e
- Resistance of an electrical conductor
 \[R = \frac{\rho_e L}{A_c} \]
- Subjected to normal stress along the axis of wire
 \[\delta R = \frac{A_c (\rho_e \delta L + L \delta \rho_e) - \rho_e L \delta A_c}{A_c^2} \]
- The change in resistance caused by
 - Change in geometry (length and cross-section area)
 - Change in resistivity
Resistance Strain Gauges
Metallic Gauges

- Piezoresistance—Dependence of resistivity on mechanical strain

Example: Determine total resistance of a copper wire having diameter of 1 mm and length of 5 cm, given copper resistivity of 1.7×10^{-8} Ωm.

Copper

\[\rho_c = 1.7 \times 10^{-8} \, \Omega \text{m} \quad L = 5 \times 10^{-2} \, \text{m} \quad D = 1 \times 10^{-3} \, \text{m} \]

\[A_e = (\pi/4)D^2 \]

\[A_e = (\pi/4)(1 \times 10^{-3})^2 = 7.85 \times 10^{-7} \, \text{m}^2 \]

\[R = \rho_c L / A_e \]

\[R = (1.7 \times 10^{-8} \, \Omega \text{m})(5 \times 10^{-2} \, \text{m})/(7.85 \times 10^{-7} \, \text{m}^2) \]

\[R = 1.8 \times 10^{-3} \, \Omega \]
Resistance Strain Gauges
Metallic Gauges

Use of nickel instead
Resistivity of $7.8 \times 10^{-8} \, \Omega \cdot m$
\[\rho_c = 7.8 \times 10^{-8} \, \Omega \cdot m \]
\[R = \rho_c L / A_c \]
\[R = (7.8 \times 10^{-8} \, \Omega \cdot m)(5 \times 10^{-2} \, m) / (7.85 \times 10^{-7} \, m^2) \]
\[R = 4.97 \times 10^{-3} \, \Omega \]

Resistance Strain Gauges
Metallic Gauges

Example: A common material for strain gauge is the alloy constantan (55% copper and 45% nickel). Typical strain gauge resistance might be 120 Ω. Determine the length of constantan wire of diameter 0.025 mm, given resistivity of $49 \times 10^{-8} \, \Omega \cdot m$.
\[\rho_c = 49 \times 10^{-8} \, \Omega \cdot m \quad R = 120 \, \Omega \quad D = 25 \times 10^{-3} \, m \]
\[A_c = (\pi/4)D^2 = (\pi/4)(25 \times 10^{-3})^2 = 4.908734 \times 10^{-4} \, m^2 \]
\[R = \rho_c L / A_c \]
\[L = R A_c / \rho_c \]
\[L = (120 \Omega)(4.908734 \times 10^{-4} \, m^2) / (49 \times 10^{-8} \, \Omega \cdot m) \]
\[L = 0.12 \, m \]

Wire length of 12 cm
Resistance Strain Gauges
Metallic Gauges

- A single straight conductor normally not practical
- Shown by last example
- Bend the wire conductor
 - To have several lengths of wire
 - Oriented along the axis of strain

Detail of a basic strain gauge construction
Resistance Strain Gauges
Strain Gauge Construction and Bonding

- Typical metallic-foil bonded strain gauge
 - Photo-etched metal foil pattern
 - Mounted on plastic backing material
- Strain gauge averages measured strain over gauge length
- Designs based on applications with a variety of conditions
 - Backing material
 - Grid configuration
 - Bonding techniques (e.g., adhesives)
 - Total gauge electrical resistance
- Strain gauge backing useful for temperatures
 - Ranging from -270°C to 290°C

Resistence Strain Gauges
Strain Gauge Construction and Bonding

Construction of a typical metallic foil strain gauge
Strain gauge configurations: (a) Torque Rosette, (b) Linear Pattern, (c) Delta Rosette, (d) Residual Stress Pattern

Strain gauge configurations: (e) Diaphragm Pattern, (f) Tee Pattern, (g) Rectangular Rosette, (h) Stacked Rosette
Resistance Strain Gauges
Strain Gauge Construction and Bonding

- **Gauge factor**—Expresses the change in resistance of a strain gauge

 \[GF = \frac{\delta R}{R} = \frac{\delta L}{L} \cdot \frac{R}{\varepsilon} \]

- Empirically determined
- Supplied by manufacturer
- For metallic strain gauge GF ~ 2

Resistance Strain Gauges
Semiconductor Strain Gauges

- A semiconductor material changes in resistance when subjected to a load
- Used for strain measurements
- Silicon crystals: Basic material for semiconductor strain gauge
- Sliced into very thin sections
- A very large gauge factor: As large as 200
- Output nonlinear with strain
- Used for construction of very small transducers
 - Diameters less than 8 mm
 - Measurements up to 15,000 psi
Resistance Strain Gauges
Examples

![Strain Gauges](image1)

![Strain Gauges](image2)
Resistance Strain Gauges

Examples

Strain Gauges

Resistance Strain Gauges

Examples

Strain Gauges
Typical gauge with sensitivity of $10^{-6} \Omega/(kN/m^2)$

- High-sensitivity device such as Wheatstone bridge
 - Equipment available to measure changes less than 0.0005 Ω
 - Bridge output at initial condition: E_0
 - Bridge deflection: δE_0
 - Change in strain gauge resistance: δR
 $$\frac{\delta E_0}{E_i} \approx \frac{\delta R}{R} \approx \frac{GF \epsilon}{4}$$
 - All fixed resistors and strain gauge resistance initially equal
 - Bridge is balanced ($E_0=0$)
 - Gauge subjected to strain

Basic strain gauge Wheatstone bridge circuit
Example: Strain gauge with gauge factor 2 mounted on rectangular steel bar (modulus of elasticity 200×10^6 kN/m2) that is 3 cm wide and 1 cm high, subjected to tensile force of 30 kN. Resistance with no load is 120 Ω. Determine the resistance change.

\[
\begin{align*}
\sigma &= \frac{F}{A_e} = \frac{30 \text{kN}}{0.03 \text{m} \times 0.01 \text{m}} = 1 \times 10^4 \text{kN/m}^2 \\
\varepsilon &= \frac{\sigma}{E_m} = \frac{1 \times 10^4 \text{kN/m}^2}{200 \times 10^6 \text{kN/m}^2} = 5 \times 10^{-4} \text{m/m} \\
\delta R / R &= \varepsilon GF \\
\delta R &= R \varepsilon GF = (120) \times (5 \times 10^{-4}) \times (2) = 0.12 \text{Ω}
\end{align*}
\]
Apparent Strain and Temperature Compensation

Sub-Topics

- Temperature Compensation

Apparent Strain and Temperature Compensation

Introduction

- Apparent strain—Any change in gauge resistance not due to the strain being measured
 - Temperature compensation
 - Eliminating certain components of strain
- Use of identical strain gauges mounted on the top and bottom of a beam subjected to axial and bending loads
 - Gauges experience equal but opposite bending strains
 - Gauges experience the same axial strain
 - Removing the effects of bending strain
Apparent Strain and Temperature Compensation

Introduction

Strain gauge installation for bending compensation

Apparent Strain and Temperature Compensation

- Temperature compensation—Differential thermal expansion between the gauge and the material on which it is mounted
- Using gauges of identical alloy composition
- Using compensating gauges
 - Strain gauge experiencing strain and temperature strain
 - Compensating gauge experiencing only temperature strain

Strain gauge installation for bending compensation
Apparent Strain and Temperature Compensation

Temperature Compensation

Bridge arrangements for temperature compensation

Apparent Strain and Temperature Compensation

Temperature Compensation

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>Compensation Provided</th>
<th>Bridge Constant κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single gauge in uniaxial stress</td>
<td>None</td>
<td>$\kappa = 1$</td>
</tr>
<tr>
<td>Two gauges sensing equal and opposite strains—typical bending arrangement</td>
<td>Temperature</td>
<td>$\kappa = 2$</td>
</tr>
<tr>
<td>Two gauges in uniaxial stress</td>
<td>Bending only</td>
<td>$\kappa = 2$</td>
</tr>
<tr>
<td>Four gauges with pairs sensing equal and opposite strains</td>
<td>Temperature and bending</td>
<td>$\kappa = 4$</td>
</tr>
<tr>
<td>One axial gauge and one Poisson gauge</td>
<td>$\kappa = 1$ or $\frac{4}{3}$</td>
<td></td>
</tr>
<tr>
<td>Four gauges with pairs sensing equal and opposite strains—sensitive to tension only; typical shaft arrangement</td>
<td>Temperature and axial</td>
<td>$\kappa = 4$</td>
</tr>
</tbody>
</table>
Optical Strain Measuring Techniques

Sub-Topics

- Basic Characteristics of Light
- Photoelastic Measurement
- Moire’ Methods

Optical Strain Measuring Techniques

Introduction

- Optical techniques for measurement of stress and strain fields
 - Models made of material with appropriate optical properties
 - Coating techniques for existing material
- Photoelasticity—Changes in optical properties of material when subjected to strains
 - E.g., plastics
- Moire’ pattern—Optical effect resulting from transmission or reflection of light from two overlaid grid patterns
 - Fringes result from relative displacement of two grid patterns
Optical Strain Measuring Techniques
Examples

![Image of optical strain measuring technique example 1]

Optical Strain Measuring Techniques
Examples

![Image of optical strain measuring technique example 2]
Optical Strain Measuring Techniques
Basic Characteristics of Light

- A light source emits a series of waves
 - Containing vibrations in all perpendicular planes
- Effect of polarizing filter on incident light wave
 - Transmitted light is plane polarized
 - Extinction of the light beam: Second polarizing filter
 - Axis of polarization at 90 degrees to the first filter
- Behaviors of light employed to measure
 - Direction and magnitude of strain
 - In photoelastic materials

Polarization of light
Construction of a plane polariscope

Optical Strain Measuring Techniques
Photoelastic Measurement

Construction of a plane polariscope
Optical Strain Measuring Techniques
Photoelastic Measurement

- Stress analysis accomplished
 - Constructing a model of the part to be analyzed from a material selected for its optical properties
 - Or by coating the actual part or prototype with a photoelastic coating
- If model constructed from suitable plastic
 - Required loads significantly less than actual
 - Reduces effort and expense in testing

Optical Strain Measuring Techniques
Moire’ Methods

- Moire’ pattern—Two overlaid, relatively dense patterns that are displaced relative to each other
- E.g., color printing with patterns of dots if printing slightly out of register
- E.g., shimmering effect
 - With some patterned clothing on television
 - Size of pattern in fabric same as resolution of television image
Optical Strain Measuring Techniques
Moire' Methods

Typically a model constructed specifically for this purpose
Uses two gratings
- Patterns of parallel lines
- Spaced equally apart
Pitch—Distance between centers of lines
- From 1 to 20 lines per mm
Ratio of transparent to pitch
Greater density of lines
- Greater sensitivity
- Coherent light required
Optical Strain Measuring Techniques
Moire’ Methods

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

- A grating fixed directly to the surface to be studied
 - Photoengraving
- Reference grating placed in contact with the surface
- Series of fringes result
- Data reduction to determine strain
- Techniques have increased sensitivity
 - Possible grating density of 1200 lines/mm

\[
\alpha = \frac{t}{p} = 0.5 \quad \text{for this grating}
\]

\[
\alpha = \frac{t}{p} = 0.75
\]

Moire’ gratings