Mechatronic Sensors

Topics

- Displacement Sensors
- Measurement of Acceleration and Vibration
- Velocity Measurements
- Angular Velocity Measurements
- Force Measurement
- Torque Measurements
- Mechanical Power Measurements

References

Mechatronic Sensors

Introduction

- Rapid advances in microprocessors
- Significant increase in electronically controlled devices and systems
- Systems require sensors and actuators
- Mechatronics—Integration of mechanical and electronic devices
 - Derived from “mechanical” and “electronic” and
- Methods and sensors for measurement of
 - Linear and rotary displacement
 - Acceleration and vibration
 - Velocity measurement
 - Force, load, torque, and mechanical power

Mechatronic Sensors
Displacement Sensors

- Displacement Sensors—Methods to measure position or displacement
- Key element in many mechatronic system
- Using
 - Potentiometric
 - Linear variable differential transformer (LVDT)
- Potentiometer—Device to measure linear or rotary displacement
- Increase in electrical resistance with displacement
- Wire-wound potentiometer: Sliding contact
- Rotary form: Numerous total revolutions
Mechatronic Sensors

Displacement Sensors

- Resolution limited by number of turns: Stepwise output
- Conductive plastic potentiometers
 - Developed to eliminate this stepwise output
 - Widely employed in mechatronic systems
 - Linear output with displacement
 - Typical linearity errors introduce
 - Instrument uncertainty from 0.2% to 0.02% of the reading
- Linear Variable Differential Transformers (LVDT)
 - Produces an AC output
 - Amplitude proportional to displacement of a movable core

Mechatronic Sensors

Displacement Sensors

Potentiometer construction
Mechatronic Sensors
Displacement Sensors

Conductive plastic potentiometer

Mechatronic Sensors
Displacement Sensors

Conductive plastic potentiometer
Construction of a linear variable differential transformer (LVDT)

Construction of a linear variable differential transformer (LVDT)
Mechatronic Sensors
Displacement Sensors

LVDT gauge head: Cross section of a typical LVDT gauge head

Mechatronic Sensors
Displacement Sensors

- Rotary variable differential transformer (RVDT)
- Angular displacement measurements
- Linear output range approximately ±40 degrees
Rotary variable differential transformer
Mechatronic Sensors
Measurement of Acceleration and Vibration

❖ Range of applications for acceleration and vibration measurements
 ❑ E.g., machine design
 ❑ E.g., guidance systems
❖ Wide variety of transducers and measurement techniques
❖ Displacement, velocity, and acceleration measurements also referred to as shock or vibration measurements
❖ Seismic Transducer—System with output direct indication of either displacement or acceleration
 ❑ A spring-mass damper system
 ❑ A protective housing
 ❑ Appropriate output transducer

Seismic transducer rigidly attached to object experiencing the motion
Seismic transducer

Response of a seismic Transducer to a constant acceleration
Mechatronic Sensors
Measurement of Acceleration and Vibration

Response of a seismic Transducer to a constant acceleration

- Transducers for Shock and Vibration Measurement
- Destructive forces generated by vibration and shock best quantified through measurement of acceleration
- Widely employed for measurement of shock and vibration
 - Strain gauge
 - Piezoelectric transducers
- Piezoelectric accelerometer—Principles of a seismic transducer through the use of a piezoelectric element
- Upward or downward motion resulting in appropriate signal
- Range of frequency response from 0.03 to 10,000 Hz
- Static sensitivity range from 1 to 100 mV/g
Mechatronic Sensors
Measurement of Acceleration and Vibration

![Basic piezoelectric accelerometer](image)

Mechatronic Sensors
Velocity Measurements

- Linear and angular velocity measurements
- Utilize a variety of approaches
 - Radar and laser systems for speed measurement
 - Mechanical counters to provide an indication of a shaft rotational speed
- Displacement, velocity, and acceleration measurements made with respect to some frame of reference
- Velocity directly measured by mechanical means only over very short times or small displacements: Limitations in transducers
- Displacement measured at identifiable time intervals: Velocity determined through differentiation of displacement
If acceleration is measured: Velocity determined from integration of the acceleration signal
Moving coil transducers—Voltage generated when a conductor experiences a displacement in a magnetic field
Same phenomenon used to generate electric power in generators and alternators
Output voltage proportional to coil velocity
Output polarity indicates velocity direction
Mechatronic Sensors
Angular Velocity Measurements

- Measurement of angular velocity: Wide range of applications
- E.g., speedometers on automobiles
- Centripetal acceleration of the flyball masses: Steady-state displacement of spring
 - Spring force proportional to square of angular velocity
- Stroboscopic angular velocity measurements
 - Stroboscopic light source
 - High-intensity flashes of light occur at a precise frequency
 - Intermittent observation of a periodic motion
 - Appears to stop or slow the motion
 - Uncertainties to less than 0.1%

Mechanical angular velocity sensor
Images resulting from harmonic and subharmonic flashing rates for stroboscopic angular speed measurement
Mechatronic Sensors
Angular Velocity Measurements

- Electromagnetic techniques
 - Rotational velocity utilize transducers
 - Generate electrical signals
 - Indicative of angular velocity

- Angular velocity found either from amplitude or frequency of the output signal

Angular velocity measurement employing a toothed wheel and magnetic pickup
Mechatronic Sensors

Force Measurements

- Measurement of force is most familiar as the process of weighing
 - Ranging from weighing micrograms of a medicine
 - To weighing trucks on the highway
- Load cell—A transducer that generates a voltage signal as a result of an applied force
 - Along a particular direction
- Force transducers often consist
 - Elastic member
 - Deflection sensor

Mechatronic Sensors

Force Measurements

- Deflection sensors employ changes to sense deflection
 - Capacitance
 - Resistance
 - Piezoelectric effect
- Load cell types
 - Strain Gauge Load Cells
 - Piezoelectric Load Cells
 - Proving Ring
Mechatronic Sensors

Force Measurements

- Strain gauge load cells
- Constructed of a metal
- Shape such that range of forces to be measured results in a measurable output voltage
- Characterized as
 - Beam-type load cells
 - Proving rings
 - Columnar-type
- Sensing element functions as a cantilever beam
- Strain gauges are mounted on top and bottom
- Measure normal or bending stresses

Elastic load cell designs

- Column
- Column with stress concentration
- Hollow column
- Frame
Mechatronic Sensors
Force Measurements

Bending beam load cell and stress distributions

Shear beam load cell and shear stress distribution
Mechatronic Sensors
Force Measurements

Typical load cells

Mechatronic Sensors
Force Measurements

Typical load cells
Mechatronic Sensors
Force Measurements

Typical load cells

Mechatronic Sensors
Force Measurements

- Piezoelectric Load Cells
- Piezoelectric materials: Develop a charge when subject to a mechanical strain
- Most common piezoelectric material: Single-crystal quartz
- Static sensitivities ranging from 0.05 to 10 mV/N
- Frequency response up to 15,000 Hz
Mechatronic Sensors
Force Measurements

- Proving Ring
- A ring-type load cell
- Calibration of materials testing machines
- Because of the high degree of precision and accuracy
- Measuring deflection of the ring in direction of applied force

Ring type load cell, or proving ring
Mechatronic Sensors

Torque Measurements

- Torque and mechanical power measurements
 - Often associated with the energy conversion processes
 - Provide mechanical and electrical power
- Mechanical power transmission occurs through torque acting through a rotating shaft
 - From automobiles to turbine-generator sets
- Strain-gauge–based torque cells
 - Constructed similar to load cells
 - Torsional strain in an elastic element is sensed
 - By strain gauges appropriately placed on elastic element

Shaft instrumented for torque measurement
Mechatronic Sensors
Mechanical Power Measurements

- Prime movers such as internal combustion (IC) engines and gas turbines
 - Convert chemical energy in a fuel to thermodynamic work
 - Transmitted by a shaft to the end use
- Power transmitted through a mechanical coupling
- Measurement of such mechanical power transmission
- Prony brake—Used to measure shaft power
- Power measured by recording torque acting on torque arm and rotational speed of the engine
- Prony brake: Example of an absorbing dynamometer
- Dynamometer—Device that absorbs and measures the power output of a prime mover

Mechatronic Sensors
Mechanical Power Measurements

- Dynamometer
 - Power absorption ratings above 200 HP
 - Top speed of 120 MPH
- American Society of Mechanical Engineers (ASME)
 - Performance Test Code (PTC) 19.7
 - Guidelines for measurement of shaft power
Mechatronic Sensors
Mechanical Power Measurements

![Diagram of a Prony brake](image)

Prony brake