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Week 1. OLS Linear Regression

I. Simple Regression

1. yi = β0 + β1xi + εi
ŷi = β0 + β1xi

where
yi: dependent variable of individual i
xi: independent variable of individual i
β0: intercept, the predicted (or expected) value of y when x = 0.

β1: slope, the predicted (or expected) change in y when x changes by 1 unit,
∂y

∂x
= b1

εi: residual; error term; disturbance (= {yi − ŷi} = {yi − (β0 + β1xi)})
ŷi: the predicted (or expected) value of y for individual i

2. How to find the best fitting line:

(a) The Ordinary Least-squares Methods (OLS) is a technique for fitting the
“best” straight line to the sample of x, y observations. It involves minimizing the
sum of the squered (vertical) deviations of points from the line:

Minimize
∑

(yi − ŷi)2

(b) β̂1 =
SS(xy)

SS(x)
=
cov(x, y)

σ2
x

where
SS(xy) =

∑
(xi − x̄)(yi − ȳ)

SS(x) =
∑

(xi − x̄)2

cov(x, y) = 1
n−1

∑
(xi − x̄)(yi − ȳ) = covariance between x and y

(c) β̂0 = ȳ − β̂1x̄

3. Test of Goodness of Fit

(a) Total variation in y = Explained variation in y + Residual variation in y
Total sum of squares = Regression sum of squares + Error sum of squares
TSS = ESS +RSS∑

(yi − ȳ)2 =
∑

(ŷi − ȳ)2 +
∑

(yi − ŷi)2

(b) Divided both sides by TSS,

1 =
RSS

TSS
+
ESS

TSS

The coefficient of determination, or R2 is then defined as the proportion of the
total variation in y explained by the regression of y on x:

R2 =
RSS

TSS
= 1−ESS

TSS
= 1−

∑
ε2
i∑

(yi − ȳ)2
= 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

= 1−
∑

(yi − (β̂0 + β̂1xi))
2∑

(yi − ȳ)2
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(c) Like any other proportions, R2 ranges from 0 to 1.

4. yi = β0 + β1xi + εi
yi = β̂0 + β̂1xi + ei

where
β0: parameter (=true value for a population) of intercept
β1: parameter (=true value for a population) of slope

β̂0: estimated parameter (=statistic computed based on a sample) of intercept

β̂1: estiamted parameter (=statistic computed based on a sample) of slope

What we want to know are β0 and β1, but what we get from a sample are β̂0 and β̂1.

5. Test of significance of parameter estimates.

We test H0 : β0 = 0 and H0 : β1 = 0. To do so, the variances of β̂0 and β̂1 are required.

V ar(β̂0) = σ2
ε

( ∑
x2
i

n
∑

(xi − x̄)2

)
V ar(β̂1) = σ2

ε

(
1∑

(xi − x̄)2

)
Since, σ2

ε is unknown (sigma is unknown), the residual variance (s2
e) is used as an

estiamte of σ2
ε .

σ̂2
ε = s2

e =

∑
e2

n− k
where k represents the number of parameter estimates. For simple regression, k is 2
(slope and intercept). Therefore, the estimates of the variance of β̂0 and β̂1 are given
by (Don’t ask. Not many sociologists understand how these formulas are driven.):

s2
β̂0

=

(∑
e2
i

n− k

)( ∑
x2
i

n
∑

(xi − x̄)2

)

s2
β̂1

=

(∑
e2
i

n− k

)(
1∑

(xi − x̄)2

)
Square roots of s2

β̂0
and s2

β̂1
are the standard errors of the estimate. Using these standard

errors, we can do t-test.

tβ̂0 =
β̂0 − β0

sβ̂0
=

β̂0

sβ̂0

tβ̂1 =
β̂1 − β1

sβ̂1
=

β̂1

sβ̂1

Because we test H0 : β0 = 0 and H0 : β1 = 0, β0 and β1 are zero in computing t.
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6. Properties of OLS Estimates

(a) OLS estimates are best linear unbiased estimates (BLUE).

(b) Lack of biase means

E(β̂) = β

So that Bias = E(β̂)− β
(c) Best unbiased or efficient means smallest variance. This is known as the Gauss-

Markov theorem and represents the most important justification for using OLS.

(d) Sometiems, a researcher may want to trade off some bias for a possibly smaller
variance and minimize the mean square error, MSE:

MSE(β̂) = E(β̂ − β)2 = var(β̂) + (bias β̂)2

(e)
∑
εi = 0

(f) The best fit line always goes through x̄ and ȳ.

(g) OLS is a conditional mean function. E(y|x) = β0 + β1x

(h) For simple regression, r-squred is equal to the square of correlation coefficient, r
(Only for simple regression).

7. An example

Table 1. Employee Hourly Wages and Years of Schooling
Employee ID Hourly Wage (y) Years of Schooling (x)

1 8.50 12
2 12.00 14
3 9.00 10
4 10.50 12
5 11.00 16
6 15.00 16
7 25.00 18
8 12.00 18
9 6.50 12
10 8.25 10

Stata Result

input id wage sch

1 8.50 12

2 12.00 14

3 9.00 10

4 10.50 12

5 11.00 16

6 15.00 16

7 25.00 18

8 12.00 18

9 6.50 12

10 8.25 10

end
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. twoway scatter wage sch

. twoway (scatter wage sch)(lfit wage sch)

. pwcorr wage sch, sig

| wage sch

-------------+------------------

wage | 1.0000

|

|

sch | 0.7216 1.0000

| 0.0185

|

.

. reg wage sch

Source | SS df MS Number of obs = 10

-------------+------------------------------ F( 1, 8) = 8.69

Model | 128.260795 1 128.260795 Prob > F = 0.0185

Residual | 118.045455 8 14.7556818 R-squared = 0.5207

-------------+------------------------------ Adj R-squared = 0.4608

Total | 246.30625 9 27.3673611 Root MSE = 3.8413

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

sch | 1.238636 .420123 2.95 0.018 .2698309 2.207442

_cons | -5.318182 5.923586 -0.90 0.396 -18.978 8.341632

------------------------------------------------------------------------------

The result can be summarized as: wage = −.3181 + 1.2386sch+ e
or you can write as: ˆwage = −.3181 + 1.2386sch, omitting the residual term, e.
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The effect of schooling is statistically significant at α=.05. It indicates that as years of
schooling increases by 1 year, the expected change in hourly wage is $1.24. When years
of schooling is zero, the expected wage is $-5.32 according to the estimated results.
However, this result does not intuitively make sense.

8. Appendix:

Mathematical Proof that:

b1 =
SS(xy)

SS(x)
=
cov(x, y)

σ2
x

b0 = ȳ − β̂1x̄

To get the best fit line, we need to minimize
∑
e2. That is to minimize

∑
(y − (b0 +

b1x))2.

Let’s say S(b0, b1) =
∑

(y − (b0 + b1x))2

(a) How to get b0:

We need to have a partial derivative of b0:

∂S(b0, b1)

∂b0

= −2
∑

(y − (b0 + b1x))

Setting the partial derivative to zero:

−2
∑

(y − (b0 + b1x)) = 0

b0 = ȳ − b1x̄

(b) How to get b1:
Likewise, we need to have a partial derivative of b1:

∂S(b0, b1)

∂b1

= −2
∑

x(y − (b0 + b1x))

Setting the partial derivative to zero:

−2
∑

x(y − (b0 + b1x)) = 0∑
xy −

∑
xb0 −

∑
b1x

2 = 0∑
xy −

∑
x(ȳ − b1x̄)−

∑
b1x

2 = 0

Solve the above normal equations :

b1 =

∑
xy −

∑
x
∑
y

n∑
x2 − (

∑
x)2

n

=
SS(xy)

SS(x)
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II. Multiple Regression

1. Three variable (i.e., 2 independent variables) linear regression model:

yi = β0 + β1x1i + β2x2i + εi

where
x1i and x2i should NOT be exactly linearly associated.

2. How to find the best fitting line:

(a) OLS parameter estimates can be obtained by minimizing the sum of e2.∑
e2 =

∑
(yi − ŷi)2 =

∑
(yi − {β̂0 + β̂1x1i + β̂2x2i})2

(b) By using OLS, we can obtain:

β̂1 =
SS(x1y)SS(x2)− SS(x2y)SS(x1x2)

SS(x1)SS(x2)− {SS(x1x2)}2
=

(
sy
sx1

)(
ryx1 − ryx2rx1x2

1− r2
x1x2

)
β̂2 =

SS(x2y)SS(x1)− SS(x1y)SS(x1x2)

SS(x1)SS(x2)− {SS(x1x2)}2
=

(
sy
sx2

)(
ryx2 − ryx1rx1x2

1− r2
x1x2

)
β̂0 = ȳ − β̂1x̄1 − β̂2x̄2

where,
SS(x1y) =

∑
(x1 − x̄1)(y − ȳ)

SS(x2y) =
∑

(x2 − x̄2)(y − ȳ)
SS(x1x2) =

∑
(x1 − x̄1)(x2 − x̄2)

SS(x1) =
∑

(x1 − x̄1)2

SS(x2) =
∑

(x2 − x̄2)2

3. How to interpret the estimated coefficients:

(a) β̂0: the expected y when both x1 and x2 are zero.

(b) β̂1: the expected change in y when x1 changes by 1 unit, holding x2 constant.
Or you can say that the expected change in y when x1 changes by 1 unit, ceteris
paribus. Or you can say that the expected change in y when x1 changes by 1 unit,
other things being equal.

∆y

∆x1

= β1

(c) β̂2: the expected change in y when x2 changes by 1 unit, holding x1 constant.
Or you can say that the expected change in y when x2 changes by 1 unit, ceteris
paribus. Or you can say that the expected change in y when x2 changes by 1 unit,
other things being equal.

∆y

∆x2

= β2
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4. Test of significance of parameter estimates.

(a) β̂ differs from sample to sample. E(β̂) = β means that on average β̂ (= estimated
parameter (i.e., statistic) based on sample) equal to β (true population parameter).
This is similar to the idea that E(ȳ) = µȳ = µy (recall Central Limit Theorem).

The distribution of of β̂ refers to the sampling distribution of β̂, that is, how β̂
varies from sample to sample.

(b) The variance of β̂ can be computed as follows:

V ar(β̂1) = σ2
ε

( ∑
x2

2∑
x2

1

∑
x2

2 − (
∑
x1x2)2

)
V ar(β̂2) = σ2

ε

( ∑
x2

1∑
x2

1

∑
x2

2 − (
∑
x1x2)2

)
(c) σ2

ε is unknown, therefore, the residual variance σ̂2
ε = s2

e =
∑
e2i

n−k is used.

s2
β̂1

=

(∑
e2
i

n− k

)( ∑
x2

2∑
x2

1

∑
x2

2 − (
∑
x1x2)2

)
=

(∑
e2
i

n− k

)(
1∑

x2
1 · (1− r2

x1x2
)

)
s2
β̂2

=

(∑
e2
i

n− k

)( ∑
x2

1∑
x2

1

∑
x2

2 − (
∑
x1x2)2

)
=

(∑
e2
i

n− k

)(
1∑

x2
2 · (1− r2

x1x2
)

)
where s2

e =
∑
e2i

n−k is the variance of the observed error terms. It is sometimes called
MSE or the mean squared error. k = the number of independent variables plus
1. Thus, for a simple regression, k = 2, and for a multiple regression with 2
independent variables, k = 3.

(d) The significance of coefficients estimated is tested with t-test. We test whether
H0 : β1 = 0 and H0 : β2 = 0.

tβ̂1 =
β̂1 − β1

sβ̂1
=

β̂1

sβ̂1

tβ̂2 =
β̂2 − β2

sβ̂2
=

β̂2

sβ̂2
Because we test H0 : β1 = 0 and H0 : β2 = 0, β1 and β2 are zero in computing t.
That is, we test whether the coefficients estimated (= β̂1 and β̂2) are statistically
different from zero or not.

5. (1− α) confidence interval for the slope

β̂1 ± t(α/2)sβ̂1
where t(α/2) is a critical value based on d.f. = N − k

Note that 5 and 4 are basically the same as the confidence interval for a mean and the
hypothesis test of a mean that we discussed previously.
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6. The coefficients of multiple determination, R2

R2 is defined as the proportion of the total variation in y “explained” by the multiple
regression of y on x1 and x2.

R2 = 1−
∑
ε2
i∑

(yi − ȳ)2
= 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

= 1−
∑

(yi − {β̂0 + β̂1x1i + β̂2x2i})2∑
(yi − ȳ)2

=
β̂1

∑
(yi − ȳ)(x1i − x̄1) + β̂2

∑
(yi − ȳ)(x2i − x̄2)∑

(yi − ȳ)2

Since the inclusion of additional independent or explanatory variable is likely to increase
the RSS =

∑
ŷ2
i for the same TSS =

∑
y2
i , thus R2 increases. To factor in the

reduction in the degree of freedom as additional independent or explanatory variables
are added, the adjusted R2 is computed:

adjusted R2 = 1− (1−R2)
n− 1

n− k

where n is the number of observations (i.e., total sample size), and k is the number of
parameters estimated.

Therefore, the maximum number of possible independent variables is n− 1.

7. E(yi|x1, x2) = β0 + β1x1 + β2x2

OLS is a conditional mean function. The predicted yi is a linear addictive function of
x1 and x2. In other words, ŷi is an expected value given x1 and x2.

For example, let’s say wage = β0 + β1(educ) + β2(age) + e,

the ˆwage = β̂0 + β̂1(BA) + β̂2(30) is the mean wage for workers with BA at age 30.
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(a) Scatterplot (b) w/ Best Fit Line

(c) 3D Scatterplot (d) w/ Best Fit Plane
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Let’s say we have the following data.

Table 1. Employee Hourly Wages, Years of Schooling, and Age
Employee ID Hourly Wage (y) Years of Schooling (x1) Age (x2)

1 8.50 12 25
2 12.00 14 34
3 9.00 10 32
4 10.50 12 40
5 11.00 16 37
6 15.00 16 51
7 25.00 18 58
8 12.00 18 42
9 6.50 12 26
10 8.25 10 28

Stata Codes

clear

input id wage sch age

1 8.5 12 25

2 12 14 34

3 9 10 32

4 10.5 12 40

5 11 16 37

6 15 16 51

7 25 18 58

8 12 18 42

9 6.5 12 26

10 8.25 10 28

end

* ------------

* Correlation Coefficients Matrix

* ------------

pwcorr wage sch age, sig

* ------------

* Regression

* ------------

reg wage sch age

predict wagehat

predict residual, resid

* ------------

* Regression with centering of the independent variables

* : which makes b_0 the expected wage when all independent variables

* : are centered at their means (i.e., yhat when all x’s = x-means)

* ------------
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egen wagemean= mean(wage)

gen newwage = wage-wagemean

egen schmean = mean(sch)

gen newsch = sch-schmean

egen agemean = mean(age)

gen newage = sch-agemean

reg wage sch age

Stata Results

. reg wage sch age

Source | SS df MS Number of obs = 10

-------------+------------------------------ F( 2, 7) = 16.82

Model | 203.88044 2 101.94022 Prob > F = 0.0021

Residual | 42.42581 7 6.06083 R-squared = 0.8278

-------------+------------------------------ Adj R-squared = 0.7785

Total | 246.30625 9 27.3673611 Root MSE = 2.4619

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

sch | .0852087 .4232348 0.20 0.846 -.9155825 1.086

age | .4218134 .1194178 3.53 0.010 .1394352 .7041917

_cons | -5.134521 3.796749 -1.35 0.218 -14.11241 3.843362

------------------------------------------------------------------------------

• Total SS:
∑

(yi − ȳ)2 = 246.30625.

• Model SS:
∑

(ŷi − ȳ)2 = 203.88044.

• Residual SS:
∑

(yi − ŷ)2 =
∑
e2 = 42.42581.

• MS: SS/df.

• MSE (Mean Square Error): Residual SS / df =
∑
e2

n−k = 6.06083.

• Root MSE:
√
MSE =

√
6.06083 = 2.4619.

• R-squared: The proportion of variation in y explained by x’s. That is, 82.8% of
the variation in wage (=

∑
(y− ȳ)2) is reduced by factoring in schooling and age.

• Adj R-squared: Adjusted R-squared after factoring in the number of covariates.

• Coef: Parameter estimated (i.e., β̂).

• St.Err.: Standard error of the parameter estimated.

• t: t-value = Coef/Std.Err.

• P>|t|: p-value = the probability of type I error for each parameter estimated.

• F and Prob > F will be discussed next week.
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8. Test of the significance of all (or multiple) slopes: F -tests

yi = β0 + β1x1i + β2x2i + β3x3i + · · ·+ βk−1x(k−1)i + εi

(a) t-test tests the significance of individual slope:
H0 : βj = 0

(b) F -test examines the significance of all regression coefficients combined:
H0 : β1 = β2 = · · · = βk−1 = 0
HA : not all coefficients of independent variables = 0

Null Model (NM): yi = β0 + εi
Full Model (FM): yi = β0 + β1x1i + β2x2i + β3x3i + · · ·+ βkx(k−1)i + εi

That is, F -test examines whether the amount of residual variance diminishes sig-
nificantly enough in Full Model compared to the amount of residual variance of
Null Model. Note that the parameter estimated of Full Model is k = 1 + the num-
ber of independent variables. Therefore, the parameter estimated of Null Model
is 1.

(c) How to compute F -test statistic to test H0 : β1 = β2 = · · · = βk = 0:

F =
(ESSNM − ESSFM)/(k − 1)

ESSFM/(n− k)
=

(R2
FM −R2

NM)/(k − 1)

(1−R2
FM)/(n− k)

=
R2
FM/(k − 1)

(1−R2
FM)/(n− k)

where ESS refers to the error sum of squares. Note that R2
NM = 0 and β̂0 = ȳ

in Null Model. Recall that k − 1 is equal to the number of independent variables
and n− k is equal to [the total sample size - # of variables - 1.]

If F -test statistic is greater than the critical value, we reject H0. F -distribution is
a ratio of χ2 distribution. The d.f. of F -test statistic is the same as the number
of independent variables.

(d) For example, in the following Stata result,

Null Model: lnwagei = β0 + εi
Full Model: lnwagei = β0 + β1(agei) + β2(yrschi) + ε

. sum lnwage

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

lnwage | 580 10.18874 1.1232 4.317488 12.92164
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. reg lnwage

Source | SS df MS Number of obs = 580

-------------+------------------------------ F( 0, 579) = 0.00

Model | 0 0 . Prob > F = .

Residual | 730.453968 579 1.26157853 R-squared = 0.0000

-------------+------------------------------ Adj R-squared = 0.0000

Total | 730.453968 579 1.26157853 Root MSE = 1.1232

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | 10.18874 .0466383 218.46 0.000 10.09714 10.28034

------------------------------------------------------------------------------

. reg lnwage age yrsch

Source | SS df MS Number of obs = 580

-------------+------------------------------ F( 2, 577) = 86.56

Model | 168.587183 2 84.2935915 Prob > F = 0.0000

Residual | 561.866785 577 .973772591 R-squared = 0.2308

-------------+------------------------------ Adj R-squared = 0.2281

Total | 730.453968 579 1.26157853 Root MSE = .9868

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0224036 .0031647 7.08 0.000 .0161879 .0286194

yrsch | .1614003 .0153952 10.48 0.000 .1311627 .1916378

_cons | 7.054155 .2422886 29.11 0.000 6.57828 7.53003

------------------------------------------------------------------------------

H0 : β1 = β2 = 0 is tested by F( 2, 577). Prob > F = 0.0000 shows that the
probability that both β1 and β2 are jointly zero is less than .0001. Note that two
separate t-tests (i.e.,H0 : β1 = 0 and H0 : β2 = 0) are not equivalent to testing the
joint hypothesis of H0 : β1 = β2 = 0.

In the above Stata result, F = (730.453968−561.866785)/2
561.866785/577

= .2308/2
(1−.2308)/577

= 86.56. The

critical value at F (α = .05, 2, 577) is 3.01.

(e) F -test also examines the significance of two or more additional independent vari-
ables compared to the model which does not have these additional variables.

Restricted Model (RM): yi = β0 + β1x1i + β2x2i + β3x3i + · · ·+ βkx(k−q−1)i + εi
Unrestricted Model (UM): yi = β0 + β1x1i + β2x2i + β3x3i + · · ·+ βkx(k−1)i + εi

In the above, unrestricted model has q number of more independent variables than
the restricted model.

Here we test,
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H0 : βk−q = βk−q+1 = βk−q+2 = · · · = βk−1 = 0
HA : not all q coefficients = 0

(f) How to compute F -test statistic to test H0 : βk−q = βk−q+1 = βk−q+2 = · · · =
βk−1 = 0:

F =
(ESSRM − ESSUM)/q

ESSUM/(n− k)
=

R2
UM −R2

RM/q

(1−R2
UM)/(n− k)

where q refers to the number of independent variable.

(g) For example, in the following regression, we add year, wtsupp, and serial in
addition to age and yrsch that we controlled for in the previous example.

RM: lnwagei = β0 + β1(agei) + β2(yrschi) + ε
UM: lnwagei = β0+β1(agei)+β2(yrschi)+β3(yeari)+β4(wtsuppi)+β5(seriali)+ε

We want to test H0 : β3 = β4 = β5 = 0

. reg lnwage age yrsch

Source | SS df MS Number of obs = 580

-------------+------------------------------ F( 2, 577) = 86.56

Model | 168.587183 2 84.2935915 Prob > F = 0.0000

Residual | 561.866785 577 .973772591 R-squared = 0.2308

-------------+------------------------------ Adj R-squared = 0.2281

Total | 730.453968 579 1.26157853 Root MSE = .9868

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0224036 .0031647 7.08 0.000 .0161879 .0286194

yrsch | .1614003 .0153952 10.48 0.000 .1311627 .1916378

_cons | 7.054155 .2422886 29.11 0.000 6.57828 7.53003

------------------------------------------------------------------------------
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. reg lnwage age yrsch year wtsupp serial

Source | SS df MS Number of obs = 580

-------------+------------------------------ F( 5, 574) = 34.69

Model | 169.519941 5 33.9039882 Prob > F = 0.0000

Residual | 560.934027 574 .977236981 R-squared = 0.2321

-------------+------------------------------ Adj R-squared = 0.2254

Total | 730.453968 579 1.26157853 Root MSE = .98855

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0224951 .0031972 7.04 0.000 .0162155 .0287746

yrsch | .1630112 .0155505 10.48 0.000 .1324684 .193554

year | .0254408 .0830589 0.31 0.759 -.1376957 .1885773

wtsupp | -.0000228 .0000437 -0.52 0.603 -.0001086 .0000631

serial | 1.19e-06 1.47e-06 0.81 0.420 -1.70e-06 4.08e-06

_cons | -44.14367 167.0164 -0.26 0.792 -372.1814 283.8941

------------------------------------------------------------------------------

(h) Using two regression results, F = (561.866785−560.934027)/3
560.934027/574

= (.2321−.2308)/3
(1−.2321)/574

= .318.

This is not statistically significant. The critical value at α = .05 with 3 df and 574
df is 2.62. Therefore, we fail to reject that H0 : β3 = β4 = β5 = 0.

(i) Fortunately, Stata has a F-test function after estimating regression model:

. test year wtsupp serial

( 1) year = 0

( 2) wtsupp = 0

( 3) serial = 0

F( 3, 574) = 0.32

Prob > F = 0.8123
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9. The assumptions of OLS Regression Models:

(a) Linearity : The expectation of the error–that is, the average value of εi given the
value of x′s–is zero: E(εi|x1, x2, · · · , xk) = 0. Equivalently, the expected value of
the response variable is a linear function of the explanatory variable.

(b) Constant variance or Homoscedasticity : The variance of the errors is the same
regardless of the value of x′s. That is, V (εi|x1, x2, · · · , xk) = σ2

εi
. Because the

distribution of the errors is the same as the distribution of the response variable
around the population regression line, constant error variance implies constant
conditional variance of y, given x′s.

V (y|x1, x2, · · · , xk) = E(yi−{β0+β1x1i+β2x2i+β3x3i+· · ·+βkxki})2 = E(ε2
i ) = σ2

εi

Note that because the mean of εi is 0, its variance is simply E(ε2
i ). In other words,

the variance of εi is equal to
∑

(εi−ε̄i)2
n−k where ε̄i = 0.

The violation of homoscedasticity assumption means heteroscedasticity. Serious
violations in homoscedasticity may result in overestimating the goodness of fit
(i.e., high R2). Violations of homoscedasticity also make it difficult to gauge
the true standard deviation of the errors, usually resulting in confidence intervals
that are too wide or too narrow. Heteroscedasticity may also have the effect of
giving too much weight to small subset of the data (namely the subset where the
error variance was largest) when estimating coefficients. However, the coefficients
estimated are still unbiased, thus, The violation of homoscedasticity assumption
is not a so serious problem.

(c) Normality : The errors are normally distributed: εi ∼ N(0, σ2
εi

). Equivalently, the
conditional distribution of the response variable is normal: yi ∼ N(β0 + β1x1i +
β2x2i + β3x3i + · · · + βkxki, σ

2
εi

). Note that there is no normality assumption for
independent variables.

Violations of normality compromise the estimation of coefficients and the calcula-
tion of confidence intervals. Sometimes the error distribution is “skewed” by the
presence of a few large outliers. Since parameter estimation is based on the mini-
mization of squared error, a few extreme observations can exert a disproportionate



SOC 910 Advanced Statistics: Lecture 1 17

influence on parameter estimates. Calculation of confidence intervals and various
significance tests for coefficients are all based on the assumptions of normally dis-
tributed errors. If the error distribution is significantly non-normal, confidence
intervals may be too wide or too narrow. Nonetheless, the coefficients estimated
are still unbiased. Therefore, the severity of the violation of the normality assump-
tion is not so great.

An easy fix of the violation of the normality assumption if the dependent variable
is rightly skewed (e.g., income) is to transform the dependent variables by taking
natural log.

(d) Independence: The observations are sampled independently. Any pair of errors
εi and εj (or equivalently, of conditional response-variable values yi and yj) are
independent for i 6= j. The assumption of independence needs to be justified by
the procedures of data collection. As long as it is randomly sampled, the indepen-
dence assumption is fulfilled for cross-sectional data.

Note that sometimes it is called an i.i.d. assumption: A sequence or other collec-
tion of random variables is independent and identically distributed (i.i.d.) if each
random variable has the same probability distribution as the others and all are
mutually independent.

The independence assumption is usually violated with time serious data, which
typically causes the problem of autocorrelation.

(e) Fixed x′s, or x′s measured without error and independent of the error : In ob-
servational studies (i.e., surveys), we assume that the explanatory variables are
measured without error and the explanatory variable and the error are indepen-
dent in the population. That is, the error has the same distribution, N(0, σ2

ε),
for every value of x. This is the most problematic assumption in OLS, and there
are various statistical models that can be applied when this assumption is violated.

If x′s and error terms are correlation, then, the coefficients estimated are biased.

(f) x’s are not invariant : All independent variables should not be constant.

(g) No multicollinearity : No x is a perfect linear function of the others. When explana-
tory variables in regression are invariant or perfectly collinear, the least-square
coefficients are not uniquely defined.
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10. Gauss-Markov Theorem
Properties of the Least-Squares Estimators: Best Linear Unbiased Estimators (BLUE)

(a) The Gauss–Markov theorem, named after Carl Friedrich Gauss and Andrey Markov,
states that in a linear regression model in which the errors have expectation zero
and are uncorrelated and have equal variances, the best linear unbiased esti-
mator (BLUE) of the coefficients is given by the ordinary least squares estimator.

In other words, within the class of linear unbiased estimates of β0 and β1, β2, · · · , βk,
the least square estimator, β̂0 and β̂1, β̂2, · · · , β̂k has minimum variance (is
most efficient).

(b) Here “best” means giving the lowest possible mean squared error of the estimate
(i.e., the smallest

∑
ε2, and, thus, the smallest mean squared error (MSE)). The

errors need not be normal. The Gauss-Markov theorem requires the assumptions
of linearity, homoscedasticity, and independence. That is, the theorem does not
depend on any assumption of normality and, thus, any other particular shape of
the distribution of the error term.

(c) In plain English, the Gauss-Markov Theorem states that the OLS estimates (β̂0

and β̂1, β̂2, · · · , β̂k) are the best guesses of the true population parameters. In
other words, the OLS estimates are more likely to be close to the true population
intercept and slope. (Read p.103. Check also pp.196–197 if you can understand
Matrix Allegra).

11. Other Properties of the Least-Squares Estimators

(a) Under normality, the least-square estimators are the most efficient among all un-
biased estimators, not just among linear estimators. When the error distribution
is heavier tailed than normal (i.e., rightly or leftly skewed), for example, the least-
squares may be much less efficient than certain robust-regression estimators, which
are not linear functions of the data.

(b) Under the assumption of normality, the least-squares coefficients are the maximum-
likelihood estimators (I’m not sure but if we have time, we will discuss the maximum-
likelihood estimators later.)


