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Week 4. Functional Forms

I. Interaction Terms

1. Two-way Interaction terms

(a)
y = b0 + b1x1 + b2x2 + b3x3 + e

where x3 = x1 × x2. Assume x1 and x2 are continuous variables.

Because x3 = x1 × x2, we can aslo write the regression model as:

y = b0 + b1x1 + b2x2 + b3x1x2 + e

(b) We can do a t-test to see if the interaction term is needed:
H0 : b3 = 0
HA : b3 6= 0

Even though the addition of b3 makes b1 and b2 insignificant, b1 and/or b2 were signif-
icant in the model of y = b0 + b1x1 + b2x2 + e, and then b3 become significant in the
model of y = b0+b1x1+b2x2+b3x3+e, then the interaction term (i.e., x3) should be kept.

(c) The net effect of x1 on y:

∂ŷ

∂x1
= b1 + b3x2

The effect of x1 on y varies depending on the value of x2. This is a partial derivative.

It is common practice to evaluate and report the above formula at the sample mean of
x2.
−→ the average effect of x1 on y = b1 + b3x̄2

(d) The net effect of x2 on y:

∂ŷ

∂x2
= b2 + b3x1

The effect of x2 on y varies depending on the value of x1. This is a partial derivative.

t is common practice to evaluate and report the above formula at the sample mean of
x1.
−→ the average effect of x2 on y = b2 + b3x̄1

(e) Another common way to report the effect of x1 is to draw a graph in which x-axis refers
to the value of x2 and y-axis is the expected value of y. Likewise, the effect of x2 is
reported as a graph in which x-axis refers to the value of x1 and y-axis is the expected
value of y.

2. Three way interaction
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(a)
y = b0 + b1x1 + b2x2 + b3x3 + b4x1x2 + b5x1x3 + b6x2x3 + b7x1x2x3 + e

(b) The net effect of x1 on y:

∂ŷ

∂x1
= b1 + b4x2 + b5x3 + b7x2x3

Therefore, the effect of x1 on y varies depending on the value of x2 and x3.

It is common practice to evaluate and report the above formula at the sample mean of
x2 and x3.
−→ The average effect of x1 on y = b1 + b4x̄2 + b5x̄3 + b7x̄2x̄3

(c) The net effect of x2 on y:

∂ŷ

∂x2
= b2 + b4x1 + b6x3 + b7x1x3

Therefore, the effect of x2 on y varies depending on the value of x1 and x3.

It is common practice to evaluate and report the above formula at the sample mean of
x1 and x3.
−→ The average effect of x1 on y = b2 + b4x̄1 + b6x̄3 + b7x̄1x̄3

(d) The net effect of x3 on y:

∂ŷ

∂x3
= b3 + b5x1 + b6x2 + b7x1x2

Therefore, the effect of x3 on y varies depending on the value of x1 and x2.

It is common practice to evaluate and report the above formula at the sample mean of
x1 and x2.
−→ The average effect of x1 on y = b3 + b5x̄1 + b6x̄2 + b7x̄1x̄2

(e) The statistical significance of the effect of x1 on y should be done with a F-test:
H0 : b1 = b4 = b5 = b7 = 0
HA : At least, one of b1, b4, b5, and b7 is not zero.

Therefore, even though b1 is insignificant, that does not necessarily mean that the effect
of x1 is insignificant. Only if b1 = b4 = b5 = b7 = 0, then we can say that the effect of
x1 on y is statistically zero.

Likewise, even though b4 is insiginfanct, it doesn’t necessarily indicate that the interac-
tion between x1 and x2 is insiginfanct. Only if b4 = b7 = 0, then we can say that the
interaction effect between x1 and x2 is statistically zero.

(f) The statistical significance of the effect of x2 on y should be done with a F-test:
H0 : b2 = b4 = b6 = b7 = 0
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HA : At least, one of b2, b4, b6, and b7 is not zero.

(g) The statistical significance of the effect of x3 on y should be done with a F-test:
H0 : b3 = b5 = b6 = b7 = 0
HA : At least, one of b3, b5, b6, and b7 is not zero.

(h) The statistical significance of the effect of x1x2x3 on y can be tested with a t-test.

II. Quadratic Terms

1. Sometimes an independent variable is squared and then entered into the regression model.
The association between x1 and y is not linear but curvilinear. One of the most common
examples is the effect of age on earnings. As ages, earnings increases up to a certain point,
and then decreases.

y = b0 + b1x1 + b2x
2
1 + e

2. To test whether the quadratic (or squared) term is needed, you can use a t-test.
H0 : b2 = 0
HA : b2 6= 0

Or you can draw a residual plot after estimating y = b0 + b1x1 + e. If the residual plot shows
a curvilinear pattern, then add the squared term.

3. The net effect of x1 on y

∂ŷ

∂x1
= b1 + 2b2x1

The net effect of x1 on y is dependent on x1. For example, how much earnings increases as a
worker becomes 1 year older depends on the worker’s current age.

It is common practice to evaluate and report the above formula at the sample mean of x1.
−→ The average effect of x1 on y = b1 + 2b2x̄1

4. The reflection point

is the value of x1 at which b1 +2b2x1 = 0. It is the highest point of y for an inverted U-shaped
curve, and the lowest point of y for a U-shaped curve.

That is x1 = −
b1

2b2

For example, if years of experiecne (x1) is regressed on earnings (y), we estimate y = b0 +
b1x1 + b2x

2
1 + e. Suppose b1 > 0 and b2 < 0. The curve is an inverted U-shaped line.

The reflection point, − b1
2b2

, indicates at what age the expected earnings would be highest on
average.
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5. An example

Wage = −4.817 + .706SCH + .392EXP − .006EXP 2 + e

The net effect of SCH = .706. As SCH increases by 1, the expected wage increases by .706
dollars on aveage after controlling for EXP.

The net effect of EXP = .392 + 2(−.006)EXP = .392− .012EXP

The net effect of EXP = .392 − .012EXP . As EXP increases by 1, the expected wage in-
creases by .392 − .012EXP dollars on aveage after controlling for SCH. Therefore, the net
effect of EXP differ by the level of EXP. When ¯EXP = 16.29, the effect of EXP on Wage is
.392− .012(.16.29) = .197.

III. Transformations of Variables

1. Principles

(a) Given the assumptions for homoscedasticity and linearity, the Gauss-Markov Theorem
states that OLS estimates are BLUE (best linear unbiased estimate). This is true re-
gardless of normality. In practice, however, when using sociological data, it is often the
case (though not always the case) that the assumptions of homoscedasticity and linear-
ity appear to be more valid when the dependent variable has a distribution that is less
skewed and more normal (or at least more symmetric).

(b) In general, when the dependent variable has a strong positive skew, a log transformation
of the dependent variable is sometimes (but not always or necessarily) desirable because
in doing so the assumptions of linearity and/or homoscedasticity seem more plausible.

(c) Ideally, theory would tell us about which functional form is appropriate. In practice, the-
ory is almost never so precise. Therefore, in practice, examination of residual plots and
outliers often suggests whether or not a transformation of the dependent variable is use-
ful. Ceteris paribus, simplicity is desirable because it is clearer, but the transformation
is desirable usually if it it improves linearity or homoscedasticity.

2. Log Transformation of the Dependent Variables

(a) Suppose that the relationship between the dependent and independent variables is ex-
ponential as follows:

Y = eb0+b1X1+b2X2ε

= eb0eb1X1eb2X2ε

OLS assumes linearity. It means the dependent variable is an additive function of inde-
pendent variables. Therefore the above equation cannot be estimated with OLS, because,
in the above equation, the dependent variable is a multiplicative function of independent
variables.
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However, by taking log on both sides of the equation, we can convert the multiplicative
function to an addictive function:

logY = b0 + b1X1 + b2X2 + log ε

Antilog (or exponentiation) of the logged Y is Y , thus,

eb0+b1X1+b2X2 = Ŷ

(b) Interpretation 1

Suppose we estimated the following model,

logY = b0 + b1EDU + b2AGE + b3MALE + log ε

where Y is annual earnings. EDU and AGE are continuous variables and MALE is a
dummy variable (i.e., female worker is set as a reference group).

As EDU increases by 1 year, the expected annual earnings will increase by [(eb1 − 1)×
100]%, holding AGE and gender constant. That is, [(eb1 −1)×100]% increase is the net
effect of EDU on annual earnings after controlling for age and gender.

As AGE increases by 1 year, the expected annual earnings will increase by [(eb2 − 1)×
100]%, holding EDU and gender constant.

For male workers, the expected annual earnings is [(eb3 − 1)× 100]% higher than female
workers, other things being equal.

(c) Interpretation 2 (not recommended)

As EDU increases by 1 year, the expected annual earnings is multiplied by eb1 , holding
AGE and gender constant.

From the above equation, Ŷ = eb0eb1EDUeb2AGEeb3MALE .

Suppose b̂1 = .07032.

e.07032 = 1.07

Thus, when EDU increases by 1 unit then predicted annual earnings is multiplied by
1.07. It is better to say that as EDU increases by 1 year, the expected earnings increases
by 7% (1.07 - 1 = .07).

(d) Interpretation 3

The expected annual earnings at EDU=16 and AGE=30 for male = eb0+b1(16)+b2(30)+b3
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(e) Interpretation 4

Suppose we estimated the following model,

logY = b0 + b1EDU + b2BLK + b3HISP + log ε

where Y is annual earnings. BLK and HISP are dummy variables, referring to African
Americans and Hispanics respectively. Whites are set as a reference group in this model.

b2 refers to the expected log annual earnings gap between whites and blacks, net of EDU .
Suppose b2 and b3 are negative. Afro-Americans’ annual earnings is [(1 − eb2) × 100]%
lower than whites, after controlling for education.

For example, suppose b2 = −.22.

e−.22 = .803.

African Americans annual earnings is (Whites’ annual earnings * .803). That is, African
Americans annual earnings is only 80.3% of that of whites, net of education.

Or you can say that African Americans annual earnings is (1-.803 = .197)*100 = 19.7%
lower than whites, net of education.

(f) Interpretation 5

The gap between blacks and Hispanics can be computed as eb2−b3 .

Suppose b2 = −.22 and b2 = −.30

The gap between blacks and Hispanics is −.22 − (−.30) = .08. Thus, net of education,
Afro-Americans’ annual earnings is on average [e−.22−(−.30) × 100]% higher than that of
Hispanics.

(Nowadays, studies usually employ much more complicated statistical models than OLS.
Nonetheless, high quality empirical research can still be conducted with OLS. An exam-
ple is Kim and Sakamoto (2010, ASR). Read this paper to check how to interpret the
log transformed dependent variable.)
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3. Log-log Model

(a) Both the dependent variable and an independent variable are log-transformed.

log Y = b0 + b1 logX1 + b2X2 + b3X3 + e

A good example is that Y is children’s income and X1 is parents’ income.

(b) How to interpret:
As x increases by 1%, y is expected to rise by b1%. This is “elasticity.”
Be cautious not to multiply b1 by 100.

(c) Another caution: As x increases by g%, the expected change in y is(
exp(β · ln

(100+g
100

)
)− 1

)
× 100

)
%. Do not multiply b1 by g when g is more than 10.

4. Multiplicative Model

(a) Multiplicative models can be estimated with OLS if we log-transform both sides as
follows:

Y = δ0X
δ1
1 X

δ2
2 X

δ3
3 ε

log Y = log δ0 + δ1 logX1 + δ2 logX2 + δ3 logX3 + log ε

(b) How to interpret:
∂ŷ
ŷ

∂x
x

=
% change in expected y

% change in x
= δ

As X changes by 1%, the expected change in Y is δ %. In economics, this kind of effect
is called elasticity.

The exact interpretation is that when x increases by g%, the expected change is Y is(
exp(δ · log

(100+g
100

)
)− 1

)
× 100 percentage.

For example, let’s say, we have the following estimate:

log(retirement-savings) = 10 + 1.2·log(income) + e

In this case, we can say that as income increases by 1%, the contribution to retirement
savings increases by 1.2%.

Then, how much retirement savings will rise if income is increased by 40%?

The answer is

i. exp(1.2 · log(1.4)) = 1.4975

ii. (1.4975 - 1)* 100 = 49.7%. Note that it is not 48%.

When δ is very close to 1, you can do δ · (percent change in x). In all other situation,
you should be very careful.

(Multiplicative models are not so common in sociology. One exception is Sakamoto and
Kim (2010, Sociological Perspective).)
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(c) An example: Population Growth

PopulationSize = Aeb1TIMEε

log(PopulationSize) = logA+ b1TIME + logε
(1)

where A is the population size at time 0; b1 refers to the population growth rate (per-
centage effect of another year of time).

Suppose,

Pop = .2 billion ×e.02T .
Or log( ˆPop) = log(.2 billion) + .02(TIME)

That is, the current population is .2 billion and it supposes to grow 2% each year. 100
years later, the expected US population is .2 billion ×e.02(100) = 1.48 billion.

The US population in 1917 was 103.3 million and in 2017, it is expected to be 320.0
million. What is the average population growth rate over the last 100 years?

Growth rate (%) =
(
exp

( log(Poptime1)− log(Poptime0)

number of years

)
− 1

)
× 100

Thus,

i.
log(320.0)− log(103.3)

100
= .0113

ii. exp(.0113) = 1.011371

iii. 1.01137 - 1 = .01137

iv. .01137× 100 = 1.14%

5. Transformation to standardized scores

The absolute magnitude of the estimated coefficients vary, in part, by the scale of variables.
Suppose we would like to estimate the following model where Y refers to annual earnings:

Y = b0 + b1EDU + b2HEIGHT + e

As the unit of earnings change from US dollars to Korean won, the estimated coefficients will
change. Furthermore, if we are interested in comparing the effects of education and heights
on earnings, the comparison of b1 and b2 is not so useful because the unit change in education
and height cannot be measured equivalently.

To resolve this problem, we can transform both dependent and independent variables to their
standardized scores (or z-scores) as follows:

ZY = b∗1ZEDU + b∗2ZHEIGHT + e



SOC 910 Advanced Statistics 9

b∗1 and b∗2 are standardized coefficients.

As height increases by 1 standard deviation, the annual earnings is expected to increase by
b2 standard deviation after controlling for education.

As standard deviation of education increases by 1, the expected change in the standard de-
viation of Y (i.e., annual earnings) will increase by b1, after controlling for height.

Note that the intercept of the second equation (in which all variables are transformed into
z-scores) is zero by definition, because the mean of standardized score is zero by definition.

From the 1st equation,

b0 = Ŷ − (b1EDU + b2HEIGHT ) = Ȳ − b1 ¯EDU + b2 ¯HEIGHT

when all variables are transformed to their standardized scores,

b∗0 = ZȲ − (b∗1Z ¯EDU + b∗2Z ¯HEIGHT ) = 0
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Appendix. Extreme Brief Review of Logarithms

1. Y = a× b
log Y = log a+ log b

100 = 4× 25,
log(100) = log 4 + log 25 ,
4.605 = 1.386 + 3.219

2. Y = a× bx
log Y = log a+ x log b

100 = 4× 52

log 100 = log 4 + 2 log 5
4.605 = 1.386 + 2(1.609)

3. Y =
a

b
= ab−1

log Y = log a− log b

100 = 4
.04 = 4(.04)−1

log 100 = log 4 - log .04
4.605 = 1.386 - (-3.219) = 1.386 + 3.219

4. X = log Y
eX = elog Y = Y

4.605 = log 100
e4.605 = 100

5. X = eY

logX = log(eY ) = Y

100 = e4.60517

log 100 = log(e4.60517) = 4.60517

6. Y = a + b
log Y = log (a+b)
i.e., log Y 6= log a+ log b

7. e0 = 1

8. log 0 = - Inf
Therefore, the negative numbers cannot be log transformed.


