BO Decomposition	Averaging Methods	A Suggestion	

The Identification Problem in Detailed Wage Decompositions: Revisited

ChangHwan Kim

University of Kansas

August 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BO Decomposition	Averaging Methods	A Suggestion	
0000	0000000	0000000	0000

OLS: Mean Wage Gap between Two Groups

$$y = a + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk} x_{jk} + e$$
 (1)

$$\bar{y}^{W} = a^{W} + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk}^{W} \bar{x}_{jk}^{W}$$

$$\bar{y}^{B} = a^{B} + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk}^{B} \bar{x}_{jk}^{B}$$
(2)

$$\bar{y}^W - \bar{y}^B = (a^W - a^B) + \sum_{j=1}^J \sum_{k=1}^K (b_{jk}^W \bar{x}_{jk}^W - b_{jk}^B \bar{x}_{jk}^B)$$
 (3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Suggestion

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Blinder-Oaxaca Decomposition

Blinder-Oaxaca Decomposition

$$\bar{y}^{W} - \bar{y}^{B} = \underbrace{\left(a^{W} - a^{B}\right)}_{D1A} + \underbrace{\sum_{j=1}^{J} \sum_{k=1}^{K} (b_{jk}^{W} - b_{jk}^{B}) \bar{x}_{jk}^{B}}_{D1B} + \underbrace{\sum_{j=1}^{J} \sum_{k=1}^{K} (\bar{x}_{jk}^{W} - \bar{x}_{jk}^{B}) b_{jk}^{W}}_{D2}}_{D2}$$
(4)

D1A: intercept effect D1B: coefficients effect D1 (D1A + D1B): total coefficients effect D2: endowment effect

A Suggestion

Identification Problem

- $\bar{y}^W \bar{y}^B$ is a constant, therefore D1 + D2 is a constant. It is evident that D1 and D2 are also constants.
- As the choices of reference groups change, the estimate of intercept changes, so do other coefficients estimated. As a result, D1A and D1B are not constant, but variant by the choices of reference groups.

_

[.179]

An Example: BO Decompositions

Intercept

	White	Black	Decomposition	
			$(\Delta = .265)$	
	Ь ^W	b ^B	D1 D2	
I-A. Original BO Dec	ompositio	on (Ref=l	_THS)	
LTHS $(=ref)$	_	_		
HSG	.251	.223	.010018	
SC	.353	.361	003008	
BA	.706	.673	.005 .054	
Grad	.934	1.001	005 .049	
[Σ Edu Effect]			[.008] [.077]	
Intercept	2 555	2 376	[179]	

I-B. Original BO Decomposition (Ref=BA)

2.555

LTHS	706	673	003	.025
HSG	454	450	001	.032
SC	353	312	013	.008
BA (=ref)	-	-	_	_
Grad	.229	.328	007	.012
[Σ Edu Effect]			[025]	[.077]
Intercept	3.261	3.049	[.212]	

2.376

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A Solution: Averaging Method?

- Gardeazabal and Ugidos (2004) suggest a normalization of the coefficients of dummy variables by imposing a restriction of $\sum \beta_{jk} = 0$ for each factor *j*.
- This restriction requires to compute the average of the coefficients obtained from all possible reference-group permutations.
- To circumvent this cumbersome procedure, Yun(2005) proposes an averaging method as follows:

BO Decomposition	Averaging Methods	A Suggestion	
0000	0000000	0000000	0000

Averaging Method

$$y = \left(a + \sum_{j=1}^{J} \bar{b}_{j}\right) + \sum_{j=1}^{J} \sum_{k=1}^{K} (b_{jk} - \bar{b}_{j}) x_{jk} + e$$

= $a' + \sum_{j=1}^{J} \sum_{k=1}^{K} b'_{jk} x_{jk} + e$ (5)

$$\bar{b}_j = rac{\sum_{k=1}^K b_{jk}}{K}.$$

Both the new coefficients for independent variables, $(b_{jk} - \bar{b}_j)$ and the new intercept, $a + \sum_{j=1}^{J} \bar{b}_j$, are invariant to the choice of reference groups. Since the coefficient of a reference group, b_{j0} , becomes $-\bar{b}_j$, there is no omitted group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Averaging Method Decomposition

	White	Black		position .265)
	b^W	b ^B	D1	D2
I-C. Averaging Met	nod Deco	omposition		
LTHS HSG SC BA+ Grad	449 198 096 .257 .485	452 229 091 .221 .549	.000 .011 002 .006 005	.016 .014 .002 .020 .025
[Σ Edu Effect] Intercept	3.004	2.828	[.011] [.176]	[.077]

The Hidden Identification Problems in the Averaging Method

- The intercept is the expected wage when all xs is 1/K. That is, E[y|(x_{jk} = 1/K)] = a'. The difference of the intercepts between two groups, a'^W a'^B, presents the expected wage difference between group W and group B when all xs are distributed evenly by 1/K across k for both groups.
- As K changes, so does the intercept.
- Furthermore, the averaging method is not only sensitive to the number of groups, but also sensitive to the ways of grouping.

Averaging Method and Number of K

	White	Black	Decomposition		
			$(\Delta =$.265)	
	Ь ^W	b ^B	D1	Ď2	
I-C. Averaging Metho	od Decon	nposition			
LTHS	449	452	.000	.016	
HSG	198	229	.011	.014	
SC	096	091	002	.002	
BA+	.257	.221	.006	.020	
Grad	.485	.549	005	.025	
[Σ Edu Effect]			[.011]	[.077]	
Intercept	3.004	2.828	[.176]		
II-A. Averaging Meth	od Using	Four Edu	cational Gr	oups:	
LTHS, HSG, SC a	nd BA+				
LTHS	347	339	001	.012	
HSG	096	117	.008	.007	
SC	.006	.021	005	.000	
BA+	.437	.435	.000	.056	
$[\Sigma Edu Effect]$			[.002]	[.075]	
Intercept	2.902	2.715	[.189]		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Averaging Method and Grouping

_

White	Black	Decomposition	-
		$(\Delta = .265)$	
b′₩	b' ^B	D1 D2	
nod Using	Four Ed	ucational Groups:	-
and BA+			
347	339	001 .012	
096	117	.008 .007	
.006	.021	005 .000	
.437	.435	.000 .056	
		[.002] [.075]	
2.902	2.715	[.189]	
	<i>b'W</i> nod Using and BA+ 347 096 .006 .437	<i>b'W b'B</i> nod Using Four Ed nod BA+ 347339 096117 .006 .021 .437 .435	$\begin{array}{c ccccc} (\Delta = .265) \\ \hline b'^W & b'^B & D1 & D2 \\ \hline \text{nod Using Four Educational Groups:} \\ \hline \text{nod BA+} \\ \hline \hline347 &339 &001 & .012 \\096 &117 & .008 & .007 \\ .006 & .021 &005 & .000 \\ .437 & .435 & .000 & .056 \\ \hline [.002] & [.075] \end{array}$

II-B. Averaging Method Using Four Educational Groups: <HSG, SC, BA, and Grad

337	373	.016	.036
199	193	002	.004
.154	.119	.006	.012
.382	.447	005	.020
		[.015]	[.072]
3.107	2.930	[.178]	
	199 .154 .382	199193 .154 .119 .382 .447	199193002 .154 .119 .006 .382 .447005 [.015]

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めるの

Issues with Continuous Variables

- As the starting point changes, so does the intercept. E.g., age; age-18; age-25
- Oaxaca and Ransom (1999:156) discuss the problem with continuous variables, but they consider this "not necessarily an identification problem."
- Yun (2005:766) simply recommends "to rely on customs" because "the identification problem related to a continuous variable cannot be resolved bacause there are infinitely many transformations."
- Kim (2010) recommends to use a discrete grouping with multiple dummy variables instead of using age as a continuous variable.

Identification Problems with Continuous Variables

	White	Black	Decompositi	$on(\Delta = .265)$
	b ^W	black b ^B	Decomposition D1	D2 = 1203
III-A. Decomposition	~	p 2	01	
		6		
Age	.101	.070	1.233	.051
Age-squared	001	001	586	052
[Σ Age Effect]			[.647]	[001]
Intercept	.802	1.184	[382]	
III-B. Decomposition	with Age	e: Centere	ed to Age 18	
Age	.063	.045	.418	.032
Age-squared	001	001	213	033
[Σ Age Effect]			[.205]	[001]
Intercept	2.277	2.216	[.060]	
III-C. Averaging Met	hod Deco	ompositio	n Using Age Gro	ups
18-24	549	386	019	.002
25-34	043	058	.004	.099
35-44	.184	.126	.015	003
45-54	.226	.174	.013	.000
55-64	.182	.144	.005	.004
[Σ Age Effect]			[.018]	[.004]
Intercept	2.957	2.715	[.242]	
-				태어 소문어 소문어

æ

A Suggestion: The Grand-Mean Centering (GMC) Method

- Should we have generally agreeable choices of reference groups, detailed decompositions will become feasible.
- Transform the independent variables x to (x x

) where x

 refers to the grand-mean for both group W and group B. The x

 is not a simple arithmetic mean between x

 W and x

 , but a
 mean computed using all observations.

BO Decomposition	Averaging Methods	A Suggestion	
0000	0000000	0000000	0000

GMC Methods

$$y = a^{*} + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk} (x_{jk} - \bar{\bar{x}}_{jk}) + \sum_{l=1}^{L} d_{l} (c_{l} - \bar{\bar{c}}_{l}) + e$$

$$= a^{*} + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk} x_{jk}^{*} + \sum_{l=1}^{L} d_{l} c_{l}^{*} + e$$
(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

After estimating equation 6, conduct the usual BO decompositions.

Why Grand Mean Centering?

- The reason why it should be the grand-mean, not the group-specific mean (or other weighting factors), is because the determination of wage will be affected by the demand and the supply of whole labor forces in a society, not only by the demand and supply of a specific group.
- If the currently observed labor market situation is a reflection of an equilibrium condition of employment which affects the wage rates, the most reasonable and practical assumption on the current status of labor market would be $\overline{\bar{x}}$.

Decomposition with the GMC Method: Ref Group

	White	Black	Decomposition	
			$(\Delta = .265)$)
	b^W	b ^B	D1	D2
I-D. GMC Method D	ecomposi	ition (Ref	=LTHS)	
LTHS $(=ref)$	-	_	-	_
HSG	.251	.223	.0020)18
SC	.353	.361	.0000	800
BA	.706	.673	002 .0)54
Grad	.934	1.001	.003 .0)49
[Σ Edu Effect]			[.003] [.07	77]
Intercept	3.013	2.828	[.185]	-

I-E. GMC Method Decomposition (Ref=BA)

LTHS	706	673	001	.025
HSG	454	450	.000	.032
SC	353	312	001	.008
BA (=ref)	_	-	_	_
Grad	.229	.328	.005	.012
[Σ Edu Effect]			[.003]	[.077]
Intercept	3.013	2.828	[.185]	

Decomposition

Decomposition with the GMC Method: Grouping

W/hite

Plack

	White	Black	Decomposition		
			$(\Delta =$.265)	
	Ь ^W	Ь ^В	D1	Ď2	
II-C. GMC Method L	Jsing Fou	r Educati	onal Groups:		
LTHS, HSG, SC a	nd BA+				
LTHS	784	774	.000	.028	
HSG	532	551	.001	.037	
SC	431	413	.000	.009	
BA+	_	_	_	_	
[Σ Edu Effect]			[.001]	[.075]	
Intercept	3.013	2.824	[.189]		
II-D. GMC Method Using Four Educational Groups:					
<hsg, and="" ba,="" grad<="" sc,="" td=""></hsg,>					
<hsg< td=""><td>_</td><td>_</td><td>_</td><td>_</td></hsg<>	_	_	_	_	
SC	.138	.180	001	003	
BA	.490	.493	.000	.038	
Grad	.719	.821	.005	.037	
[Σ Edu Effect]			[.004]	[.072]	
Intercept	3.013	2.825	[.189]		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

GMC Method: Continuous Variable

	White	Black	Decomp	ocition
	vville	DIACK	•	
	14/		$(\Delta = .$	205)
	Ь ^W	b ^B	D1	D2
III-D. GMC Method	Decompo	sition wit	h Age	
Age	.101	.070	014	.051
Age-squared	001	001	.015	052
[Σ Age Effect]			[.001]	[001]
Intercept	3.019	2.755	[.265]	
III-E. GMC Method I	Decompo	sition wit	h Age-18:	
Age-18	.063	.045	009	.032
Age-18-squared	001	001	.010	033
[Σ Age Effect]			[.001]	[001]
Intercept	3.019	2.755	[.265]	
III-F. GMC Method Decomposition Using Age Groups				
18-24	_	_	_	_
25-34	.506	.328	.001	002
35-44	.733	.512	.003	011
45-54	.774	.559	.000	.000
55-64	.730	.529	004	.017
[Σ Age Effect]			[001]	[.004]
Intercept	3.019	2.758	[.261]	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Suggestion

Modified GMC Method

Because there are omitted values (i.e., the coefficients for reference groups are set to zero by definition), a detailed decomposition by factor levels (e.g., LTHS, HSG, SC, Married, Not-married) appears still not feasible with the GMC method. However, an application of the averaging method to the GMC method helps to make the detailed decomposition by each variable viable.

Modified GMC Method

$$y = a^{\dagger} + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk} x_{jk} + \sum_{l=1}^{L} d_l (c_l - \bar{\bar{c}}_l) + e$$
(7)

$$y = \left(a^{\dagger} + \sum_{j=1}^{J} \bar{b}_{j}^{*}\right) + \sum_{j=1}^{J} \sum_{k=1}^{K} (b_{jk} - \bar{b}_{j}^{*}) x_{jk} + \sum_{l=1}^{L} d_{l} (c_{l} - \bar{c}_{l}) + e$$
$$= a^{*} + \sum_{j=1}^{J} \sum_{k=1}^{K} b_{jk}^{*} x_{jk} + \sum_{l=1}^{L} d_{l} c_{l}^{*} + e$$
where $\bar{b}_{j}^{*} = \sum_{k=1}^{K} b_{jk} \bar{\bar{x}}_{jk}$ for each factor j .

(8)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

BO Decomposition	Averaging Methods	A Suggestion	Conclusion ●○○○

Summary

- Detailed decompositions of BO techniques are problematic b/c of identification problems.
- To solve this problem, Yun(2005) proposes the averaging methods.
- However, the averaging methods is not free from identification problems. The decomposition results of averaging methods are sensitive to the number of factor levels and ways of grouping.
- To resolve these problems, I suggest the grand-mean centering (GMC) methods and the modified GMC method.

BO Decomposition	Averaging Methods	A Suggestion	Conclusion
			0000

Conclusion

The modified GMC method resolves all identification issues, provides a clear meaning of the intercept term, and makes the detail decomposition feasible with a reasonable assumption.

BO Decomposition	Averaging Methods 0000000	A Suggestion	Conclusion

However,

- The modified GMC method is not the ultimate solution of the identification problems. There are no such methods that can ultimately solve the identification problems.
- Whatever methods-the BO decomposition, the averaging methods, the GMC methods, or any other methods with the constraints of ∑_{k=1}^K b'_k=0-are utilized, the detail decompositions are mathematically correct.
- The different choices of model specifications for detail decompositions can be accepted depending on theoretical or practical reasonings.

BO Decomposition	Averaging Methods	A Suggestion	Conclusion
0000	0000000	0000000	0000

Thank you! chkim@ku.edu

