Week 6. Oaxaca-Blinder Decomposition

What is Oaxaca-Blinder Decomposition?

- 1. Mean difference between two groups (group 1 and group 2): \bar{Y}_1 and \bar{Y}_2
- 2. It is a technique to decompose the mean difference $(=\bar{Y}_1 \bar{Y}_2)$ into two components:
 - (a) Coefficient effect
 - = the rate effect,
 - = the unexplained difference,

which quantifies how much the mean difference between two groups can be attributable to the different treatment on the same characteristics. This effect is often regarded as "discrimination." However, I strongly recommend you not to call it "discrimination."

- (b) Endowment effect
 - = the distributional effect,
 = the explained difference,
 which quantifies how much the mean difference between two groups can be attributable to the different distributions between two groups.
- 3. For example, the mean earnings gap between whites and blacks can be attributed to (1) the difference in the proportion of highly educated workers between two races, and (2) the differentiated rewards to the same level of education between races.
- 4. It is always about the difference between "two" groups.
- 5. Detailed decomposition is possible but you should be cautious. There are identification problems.

Statistical Explanation

Suppose you estimated the following model. One for white and the other for minority.

$$Y_i = a_i + \sum_J \sum_K b_{ijk} X_{ijk} + \epsilon \tag{1}$$

We can predict mean wages for groups w and m based on estimations from two regression models. The mean wages of the groups at time t can be expressed as follows:

$$\bar{Y}_i = a_{it} + \sum_J \sum_K b_{ijk} \bar{X}_{ijk} \tag{2}$$

where *i* indexes groups w (say, White) and m (say, minority) and t indexes time points. Y_{it} refers to the mean wage for group *i*. The *a* term is an estimated constant, and *b* represents the estimated coefficients. \bar{X} refers to the mean values of the explanatory variables. Since the error term for a mean value is zero by the definition of OLS regression, I drop it from the equation. In case of *b* and \bar{X} , *j* indexes a *j*th category containing a set of relevant dummy variables and *k* indexes a *k*th dummy variable in each *j*. For simplicity, I drop *j* and *k* subscripts henceforth in the remaining part. The wage gap between group *w* and group *m*, $(Y_w - Y_m)$, can be calculated by substituting the estimates for the right side of Equation 1, $([a_w + \sum \sum b_w \bar{X}_w] - [a_m + \sum \sum b_m \bar{X}_m])$. A Blinder-Oaxaca method breaks down this wage gap as follows:

$$\bar{Y}_w - \bar{Y}_m = \underbrace{[a_w - a_m]}_{\text{A1. Intercept Effect}} + \underbrace{\sum \sum \left[(b_w - b_m) \left(\frac{\bar{X}_w + \bar{X}_m}{2} \right) \right]}_{\text{A2. Coefficient Effect}} + \underbrace{\sum \sum \left[(\bar{X}_w - \bar{X}_m) \left(\frac{b_w + b_m}{2} \right) \right]}_{\text{A3. Endowment Effect}}$$
(3)

Note that instead of (a) $\left(\frac{\bar{X}_w + \bar{X}_m}{2}\right)$ and $\left(\frac{b_w + b_m}{2}\right)$, you can use (b) \bar{X}_w and b_m , or (c) \bar{X}_m and b_w as shown below. In most cases, your result will be only slightly different by the choice of (a), (b), or (c). But sometimes the difference is substantial. Sensitivity test is usually recommended.

$$\bar{Y}_w - \bar{Y}_m = \underbrace{[a_w - a_m]}_{\text{A1. Intercept Effect}} + \underbrace{\sum\sum_{\text{A2. Coefficient Effect}} (b_w - b_m) \bar{X}_w}_{\text{A2. Coefficient Effect}} + \underbrace{\sum\sum_{\text{A3. Endowment Effect}} (\bar{X}_w - \bar{X}_m) b_m}_{\text{A3. Endowment Effect}}$$
(4)

From this result you report the size of two effects:

- 1. Coefficient Effect = A1 + A2
- 2. Endowment Effect = A3

You can compute this with Excel. Fortunately there is a Stata command.

Stata command

1. The personal earnings gap between whites and blacks is .2665 log dollars.

```
. tabstat lnpincome, by(black)
```

black	I	mean
0 1	-+- 	10.5726 10.30613
Total		10.54621

2. OLS Regression without Covariates

If you estimate an OLS model without any control variables except female, you get the following result. Here is the coefficient of black is the mean difference in earnings between whites and blacks.

. reg lnpincome black

lnpincome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
black	2664713	.0277216	-9.61	0.000	3208088	2121337
_cons	10.5726	.008724	1211.90		10.5555	10.5897

3. OLS Regression with Covariates

If you estimate an OLS model without an interaction, you get the following result. The coefficient of black becomes substantially reduced (= -.1056) compared to the basic model (-.2665). Usually we say that the control variables account for 60% of racial earnings gap (= (-.26647+.10558)/-.26647).

. reg lnpincome black female i.edu age married

Source	l ss	df	MS	Num	ber of obs	s =	15,348
	+			- F(8	, 15339)	=	503.24
Model	3377.83676	8	422.22959	5 Prol	b > F	=	0.0000
Residual	12869.7402	15,339	.83902081	3 R-s	quared	=	0.2079
	+			- Adj	R-squared	l =	0.2075
Total	16247.577	15,347	1.0586809	8 Roo	t MSE	=	.91598
lnpincome	l Coef.	Std. Err.	 t	 P> t	 ۶5% ۵	Conf.	Intervall
	+						
black	1018714	.0254998	-3.99	0.000	15185	541	0518888
female	65128	.0148911	-43.74	0.000	68046	383	6220916
	I						
edu	I						
2	.2672748	.042582	6.28	0.000	.18380)89	.3507406
3	.4894489	.0416642	11.75	0.000	.40778	321	.5711157
4	.8708241	.0420922	20.69	0.000	.78831	.85	.9533297
5	1.237103	.0435773	28.39	0.000	1.1516	686	1.322519
	I						
age	.0103045	.0026002	3.96	0.000	.00520)77	.0154012
married	0213489	.0222227	-0.96	0.337	0649	808	.0222102
_cons	9.820821	.1121696	87.55	0.000	9.6009	956	10.04069

4. Simple Decomposition

Below is the Oaxaca-Blinder decomposition results. Explained is the endowment effect and Unexplained is the coefficient effect.

. oaxaca lnpincome female edu2 edu3 edu4 edu5 age married, by(black) w(1)

Blinder-Oaxaca	a decomposition	Number of	obs =	15,348		
1: 2:	black = 0 black = 1					
lnpincome	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Differential Prediction_1 Prediction_2 Difference	 10.5726 10.30613 .2664713	.0088174 .0236947 .0252821	1199.06 434.96 10.54	0.000 0.000 0.000	10.55532 10.25969 .2169193	10.58989 10.35257 .3160232
Decomposition Explained Unexplained	 .169037 .0974343	.0142391 .0247042	11.87 3.94	0.000 0.000	.1411288 .0490151	. 1969451 . 1458536

5. Detailed Decomposition 1

(ref = edu1(LTHS) for a set of education dummy variables)

Below is the detailed decomposition results. The components of Explained and Unexplained are decomposed into each variable.

. oaxaca lnpincome female edu2 edu3 edu4 edu5 age married, by(black) w(1) detail(edu:edu*)

Blinder-Oaxaca decomposition

```
Number of obs = 15,348
```

1: black = 0 2: black = 1

lnpincome		Coef.	Std.	Err.	z	P> :	z [95%	Conf.	Interval]
Differential									
Prediction_1	Ι	10.5726	.008	8174	1199.0	6 0.00	00 10.5	5532	10.58989
Prediction_2	Ι	10.30613	.023	6947	434.9	6 0.00	00 10.2	5969	10.35257
Difference		.2664713	.025	2821	10.5	4 0.00	.2169	9193	.3160232
Explained	-+-								
female	Ι	.0650001	.009	3827	6.9	3 0.00	.046	6105	.0833898
edu	Ι	.1067261	.009	2775	11.5	0 0.00	.088	5425	.1249098
age	Ι	.0014545	.000	8633	1.6	8 0.09	92000	2376	.0031466
married	Ι	0041438	.00	6112	-0.6	8 0.49	98016	6123	.0078354
Total		.169037	.014	2391	11.8	0.00	.141	1288	.1969451
Unexplained	-+-								
female	Ι	2251413	.027	1768	-8.2	8 0.00	002784	4069	1718758
edu	Ι	0098657	.101	1814	-0.1	0 0.92	208	1776	.1884462
age	Ι	199828	.322	5986	-0.6	2 0.53	36832	1096	.4324537
married	Ι	049026	.034	7166	-1.4	1 0.1	581170	0693	.0190173
_cons	Ι	.5812953	.341	4981	1.7	0.08	0880	0287	1.250619
Total	Ι	.0974343	.024	7042	3.9	4 0.00	.0490	0151	.1458536

edu: edu2 edu3 edu4 edu5

6. Detailed Decomposition 2

(ref = edu4(BA) for a set of education dummy variables)

As you see the result of Detailed Decompositions 1 and 2 are different. The unexplained effect of education was -.0099 in Decomposition 1 but it now became .0457222 in Decomposition 2. The unexplained effect of the constant has also been changed between two models. This is the identification problem of the detailed Oaxaca-Blinder Decomposition. As you change the reference group, the effect size of the unexplained part also changes.

. oaxaca lnpincome female edu1 edu2 edu3 edu5 age married, by(black) w(1) detail(edu:edu*)

Blinder-Oaxaca decomposition Number of obs 15,348 1: black = 02: black = 1 _____ _____ [95% Conf. Interval] lnpincome | Coef. Std. Err. 7. P>|z| _____+ Differential | .0088174 1199.06 0.000 Prediction_1 | 10.5726 10.55532 10.58989 Prediction_2 | 10.30613 .0236947 434.96 0.000 10.25969 10.35257 Difference | .2664713 .0252821 10.54 0.000 .2169193 .3160232 ----+ Explained Τ .0650001 .0093827 0.000 female | 6.93 .0466105 .0833898 edu | .1067261 .0092775 11.50 0.000 .0885425 .1249098 -.0002376 age | .0014545 .0008633 1.68 0.092 .0031466 married | -.0041438 .006112 -0.68 0.498 -.016123 .0078354 Total | .169037 .0142391 11.87 0.000 .1411288 .1969451 ______ _____ Unexplained | female | -.2251413 .0271768 -8.28 0.000 -.2784069 -.1718758 edu | .0457222 .0480695 0.95 0.342 -.0484923 .1399367 age | -.199828 .3225986 -0.62 0.536 -.8321096 .4324537 -.049026 married | .0347166 -1.410.158 -.1170693.0190173 _cons | .5257074 .330021 1.59 0.111 -.1211219 1.172537 Total | .0974343 .0247042 3.94 0.000 .0490151 .1458536 _____

edu: edu1 edu2 edu3 edu5

Identification Problem

See the PDF slides and read Kim's (2013) Sociological Methodology paper.

Decomposition of the change over time between two groups

See the PDF slides and read Kim's (2010) Sociological Methods and Research paper.