# Week 7. Logistic Regression 1

#### When to use

- 1. Use Logistic Regression when your outcome variable (= dependent variable) is a dummy variable.
  - E.g. employment = 0, unemployment = 1.
- 2. Independent variables can be any variables.

#### In a Nutshell

$$\operatorname{logit}(p_i) = \ln\left(\frac{p_i}{1 - p_i}\right) = \sum_{k=0}^{K} \beta_k X_{ik} = \beta_0 + \beta_1 X_{i1} + \dots + \beta_K X_{iK}$$

- 1.  $\left(\frac{p_i}{1-p_i}\right)$  is called odds. For example, if the probability of employment is 90%,  $\left(\frac{.90}{1-.90}\right) = 9$ . The odds of employment is 9.
- 2. The odds is log transformed.
- 3. Thus,

$$\exp\left(\ln\left(\frac{p_{i}}{1-p_{i}}\right)\right) = \frac{p_{i}}{1-p_{i}} = e^{\beta_{0}+\beta_{1}X_{i1}+\dots+\beta_{K}X_{iK}} = e^{\beta_{0}}e^{\beta_{1}X_{i1}}\dots e^{\beta_{K}X_{iK}}$$

- 4. The interpretation is exactly the same as OLS with a log-transformed dependent variable. In OLS, y is log transformed. In Logistic Regression, Logit =  $\left(\frac{p_i}{1-p_i}\right)$  is log transformed.
- 5. " $\exp(\beta_k)$ " is odds ratio, which quantifies how much "times" of odds increases when X increases by 1 unit compared to the reference group.
- 6. Interpretation 1: As X increases by 1 unit, the odds increase by  $\exp(\beta_k)$  times compared to the reference point. Odds ratio is a ratio of two odds.
- 7. Interpretation 2: As X increases by 1 unit, the log odds (= Logit) increases by  $\beta_k$ .
- 8. For example, let's say that the probabilities of employment are 90% for BA+ and 80% for HSG. Odds of employment for BA+ is 9 = .9/(1-.9), and odds of employment for HSG is 4 = .8/(1-.8). Thus odds ratio is 9/4 = 2.25. Compared to HSG, the odds of employment is 2.25 times higher for BA+.

$$\ln\left(\frac{p_i}{1 - p_i}\right) = 1.39 + .81BA$$

Probability of employment for HSG = .8

Odds for HSG = .8/(1-.8) = 4

Log of odds = Logit for HSG = ln(4) = 1.39, which is the constant in the above equation.

Probability of employment for BA = .9

Odds for BA = 
$$.9/(1-.9) = 9$$

Log of odds = Logit for BA = ln(9) = 2.2, which is 1.39+.81 in the above equation.

Odds ratio = 
$$\left(\frac{.9}{1 - .9}\right) \div \left(\frac{.8}{1 - .8}\right) = \frac{.9(1 - .8)}{.8(1 - .9)} = 2.25$$

If the odds of employment are the same between BA and HSG, the odds ratio will be 1. In this case, the coefficient of logistic regression is 0 ( $\ln(1) = 0$ , exp(0) = 1).

9. Because 
$$\left(\frac{p_i}{1-p_i}\right) = \exp(\sum_{k=0}^{K} \beta_k X_{ik}),$$

$$p_i = \frac{\exp(\sum_{k=0}^{K} \beta_k X_{ik})}{1 + \exp(\sum_{k=0}^{K} \beta_k X_{ik})}$$

For HSG, 
$$\exp(1.39)/(1 + \exp(1.39)) = .80$$
  
For BA,  $\exp(2.2)/(1 + \exp(2.2)) = .90$ 

- 10. Statistical significance. Interpret the same as OLS.
- 11. Model fitness. Report -2LL (log likelihood times -2) or LL. Stata will also provide pseudo r-squared.

# Logit

1. Why Logit? Why not OLS? A binary outcome is either 1 or 0. The probability of an event cannot go higher than 1 and lower than 0. The probability distribution should look like:



Figure 1: Probability Distribution

The expected value of OLS can go outside the 0 to 1 range. Unlike OLS, the expected probability of Logit is ranged always between 0 and 1.

- 2. Logit = log odds,  $logit(p_i) = ln\left(\frac{p_i}{1-p_i}\right)$
- 3. As the probability goes down to zero the odds approach zero and the logit approaches  $-\infty$ .
- 4. At the other extreme, as the probability approaches one the odds approach  $+\infty$  and so does the logit.
- 5. Thus, logits map probabilities from the (0,1) to the entire real line  $(-\infty, +\infty)$ .
- 6. Note that if p = .50, the odds are even and the logit is zero. Negative logits represent probabilities below one half and positive logits correspond to probabilities above one half.
- 7. Because logits transfer the range from (0,1) to  $(-\infty, +\infty)$ , regression analyses become available in logistic regression. That is, we assume the logit of probability  $p_i$  (not probability itself) follows a linear model.
- 8. That is,

# LPM: Linear Probability Model

- 1. Estimate OLS with a dummy dependent variable.
- 2. From the previous example, you will get the following result:

$$y = .80 + .10BA + e$$

- (a) Note that unlike logistic regression, LPM assumes that probability  $(p_i)$  itself follows a linear model.
- (b) Apparently, however, probability  $(p_i)$  is not linear. There must be ceiling and floor effects.

#### 3. Problems of LPM

- (a) The predicted outcome can be outside the range of 0 to 1.
- (b) The dependent variable,  $y_i$ , for group i is distributed as binomial, with variance  $n_i p_i (1 p_i)$ , whereas the sample proportion  $p_i$  has variance of  $p_i (1 p_i)/n_i$ . Thus, the variance in the dependent variable depends on the size of the group and the probability of success (=1). Since these quantities are not constant across groups, the errors are heteroscedastic. As a result, the standard errors are not correct.



Figure 2: Logit vs. LPM

## 4. Solutions

- (a) For the 1st problem, unless you tries to compute the extreme cases, LPM does not have a problem of (a).
- (b) For the 2nd problem, apply the weight,  $w_i = n_i/(p_i(1-p_i))$ . This is a weighted least square model. Thus, OLS will minimize the weighted sum of squares (or weighted error squares) instead of minimizing the error squared. Simply put, use "robust" option in Stata. Recall that as long as you apply weight (=pw), Stata automatically applies the robust option.

# Logit: Stata Results

$$Logit(p^{emp}) = \alpha + \sum \beta E du_j + \gamma Female + \delta age + \pi age^2$$

where  $p^{emp}$  is probability of employment. In the following logistic regression, the dependent variable is emp (1 = employed, 0 = unemployed).

| emp                        | Freq.          | Percent                                                             | Cun                                             | n.                                                         |                                                                       |                                                |                                                                               |
|----------------------------|----------------|---------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|
|                            | 1,115.0065     | 5.81                                                                | 5.8                                             |                                                            |                                                                       |                                                |                                                                               |
| 1  <br>+                   | 18,059.993<br> | 94.19                                                               | 100.0                                           | )O<br>                                                     |                                                                       |                                                |                                                                               |
| Total                      | 19,175         | 100.00                                                              |                                                 |                                                            |                                                                       |                                                |                                                                               |
| logit emp i                | .edu female aş | ge age2 [pw=                                                        | perwt]                                          |                                                            |                                                                       |                                                |                                                                               |
| eration 0:                 | log pseudol:   | ikelihood =                                                         | -145438                                         | 94                                                         |                                                                       |                                                |                                                                               |
| eration 1:                 | 0 1            | ikelihood =                                                         |                                                 |                                                            |                                                                       |                                                |                                                                               |
| eration 2:                 | ~ -            | ikelihood =                                                         |                                                 |                                                            |                                                                       |                                                |                                                                               |
| eration 3:                 | log pseudol:   | ikelihood =                                                         | -140155.2                                       | 26                                                         |                                                                       |                                                |                                                                               |
| eration 4:                 | log pseudol:   | ikelihood =                                                         | -140155.2                                       | 26                                                         |                                                                       |                                                |                                                                               |
| gistic regr                | ossion         |                                                                     |                                                 | Numbo                                                      | r of obs                                                              | _                                              | 19175                                                                         |
| gistic regi                | 6221011        |                                                                     |                                                 | Numbe                                                      | 1 01 005                                                              | _                                              | 13173                                                                         |
|                            |                |                                                                     |                                                 | Wald                                                       | chi2(7)                                                               | =                                              | 200 72                                                                        |
|                            |                |                                                                     |                                                 | Wald<br>Prob                                               | chi2(7)<br>> chi2                                                     | =                                              |                                                                               |
| og pseudolik               | elihood = -140 | 0155.26                                                             |                                                 | Prob                                                       | chi2(7)<br>> chi2<br>o R2                                             | =                                              | 0.0000                                                                        |
| og pseudolik               | elihood = -140 |                                                                     |                                                 | Prob                                                       | > chi2                                                                | =                                              | 0.0000                                                                        |
|                            | <br>I          | Robust                                                              |                                                 | Prob<br>Pseud                                              | > chi2<br>o R2                                                        | =<br>=<br>                                     | 0.0000<br>0.0363                                                              |
| og pseudolik<br><br>emp    | <br>I          |                                                                     | z                                               | Prob<br>Pseud                                              | > chi2<br>o R2                                                        | =<br>=<br>                                     | 0.0000<br>0.0363                                                              |
|                            |                | Robust                                                              | z                                               | Prob<br>Pseud                                              | > chi2<br>o R2                                                        | =<br>=<br>                                     | 0.0000<br>0.0363                                                              |
| emp                        |                | Robust                                                              |                                                 | Prob<br>Pseud<br><br>P> z                                  | > chi2<br>o R2<br><br>[95% Co                                         | =<br>=<br><br>onf.                             | 0.0000<br>0.0363                                                              |
| emp                        | Coef.<br>+     | Robust<br>Std. Err.                                                 | 3.54                                            | Prob<br>Pseud<br>                                          | > chi2<br>o R2<br><br>[95% Co                                         | =<br>=<br><br>onf.<br>                         | 0.0000<br>0.0363<br>Interval]                                                 |
| emp<br>edu<br>2            | Coef.<br>+     | Robust<br>Std. Err.                                                 | 3.54<br>5.56                                    | Prob<br>Pseud<br>                                          | > chi2<br>o R2<br>                                                    | =<br>=<br><br>onf.<br>                         | 0.0000<br>0.0363<br>Interval]                                                 |
| emp<br>edu<br>2<br>3       | Coef.<br>+     | Robust<br>Std. Err.<br>.1249446<br>.1237244                         | 3.54<br>5.56                                    | Prob<br>Pseud<br>                                          | > chi2<br>o R2<br>                                                    | =<br>=<br><br>onf.<br><br>95<br>16<br>91       | 0.0000<br>0.0363<br>                                                          |
| emp edu 2 3 4 5            | Coef.<br>      | Robust Std. Err.  .1249446 .1237244 .1363582 .1724174               | 3.54<br>5.56<br>10.50<br>10.94                  | Prob<br>Pseud<br>P> z <br>0.000<br>0.000<br>0.000<br>0.000 | > chi2<br>o R2<br>                                                    | =<br>=<br>onf.<br><br>95<br>16<br>91           | 0.0000<br>0.0363<br>Interval]<br>.6877934<br>.9300223<br>1.698405<br>2.224991 |
| emp edu 2 3 4 5            | Coef.<br>      | Robust<br>Std. Err.<br>.1249446<br>.1237244<br>.1363582<br>.1724174 | 3.54<br>5.56<br>10.50<br>10.94                  | Prob<br>Pseud<br>P> z <br>0.000<br>0.000<br>0.000<br>0.000 | > chi2<br>o R2<br>[95% Co<br>.198019<br>.44503:<br>1.16389<br>1.54912 | =<br>=<br><br>onf.<br><br>95<br>16<br>91<br>27 | 0.0000<br>0.0363<br>Interval]<br>.6877934<br>.9300223<br>1.698405<br>2.224991 |
| emp edu 2 3 4 5 female age | Coef.          | Robust Std. Err1249446 .1237244 .1363582 .1724174 .0792752 .4198824 | 3.54<br>5.56<br>10.50<br>10.94<br>-2.84<br>1.47 | Prob<br>Pseud<br>P> z <br>0.000<br>0.000<br>0.000<br>0.000 | > chi2<br>o R2<br>                                                    | =<br>=<br>onf.<br><br>95<br>16<br>91<br>27     | 0.0000<br>0.0363<br>Interval]<br>.6877934<br>.9300223<br>1.698405<br>2.224991 |

To get the odds ratio, do the following:

. logit, or Number of obs = 19175Wald chi2(7) = 200.72Logistic regression Prob > chi2 = 0.0000 Log pseudolikelihood = -140155.26 0.0363 Pseudo R2 Robust emp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] edu | 2 | 1.557227 .1945671 3.54 0.000 1.218986 1.989321 
 3 | 1.988791
 .246062
 5.56
 0.000
 1.560539
 2.534566

 4 | 4.183499
 .5704543
 10.50
 0.000
 3.202369
 5.465224

 5 | 6.599929
 1.137943
 10.94
 0.000
 4.707358
 9.253398
 male | .7983345 .0632881 -2.84 0.004 .6834485 .9325327 age | 1.854087 .7784984 1.47 0.141 .8141895 4.222159 age2 | .9923215 .0052604 -1.45 0.146 .9820648 1.002685 female | .7983345 age2 | .9923215 .0052604 \_cons | .0000366 .0003035 -1.23 0.218 3.26e-12 411.4875

Note that logistic emp i.edu female age age2 [pw=perwt] will report the identical results with odds ratio.

## "margins" command

| . margins                             |               |              |        |        |            |           |  |
|---------------------------------------|---------------|--------------|--------|--------|------------|-----------|--|
| Predictive margins Model VCE : Robust |               |              |        | Number | of obs =   | 19175     |  |
| Expression                            | : Linear pred | iction, pred | lict() |        |            |           |  |
|                                       | •             |              | t      |        | [95% Conf. | Interval] |  |
|                                       | .941851       |              |        |        |            | .9460105  |  |
| . margins i.e                         | du            |              |        |        |            | <b></b>   |  |
| Predictive ma                         | •             |              |        | Number | of obs =   | 19175     |  |

| Inprobbion .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : Linear predi                                                   | iction, pred                    | lict()           |                              |                                           |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|------------------|------------------------------|-------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>  I                                                          | <br>Delta-method                | <br>l            |                              |                                           |                               |
| İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                |                                 |                  | P> t                         | [95% Conf.                                | Interval]                     |
| <br>edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '                                                                |                                 |                  |                              |                                           |                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I 8796635                                                        | .0105679                        | 83.24            | 0.000                        | .8589494                                  | .9003775                      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .9184215                                                         | .0054778                        | 167.66           | 0.000                        | 9076845                                   | 929158                        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .9347527                                                         | .0043027                        | 217.25           | 0.000                        | .9263191                                  | .943186                       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .9679397                                                         | .0028386                        | 340.99           | 0.000                        | .9623758                                  | .9735036                      |
| 5  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .9184215<br>  .9184215<br>  .9347527<br>  .9679397<br>  .9796876 | .0028365<br>                    | 345.39           | 0.000                        | .9741279<br>                              | .9852473                      |
| . margins, dyo<br>Average margin<br>Model VCE :<br>Expression :<br>dy/dx w.r.t. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nal effects<br>: Robust<br>: Linear pred                         | -                               |                  | Numbei                       | r of obs =                                | 19175                         |
| <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I<br>  dy/dx                                                     | Delta-method<br>Std. Err.       |                  | P> t                         | [95% Conf.                                | Interval]                     |
| edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                |                                 |                  |                              |                                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .038758                                                          |                                 |                  |                              |                                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 011/1/0                         | / Q2             | 0.000                        | N327112                                   |                               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0550892                                                         |                                 |                  |                              |                                           |                               |
| 3  <br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0550892<br>  .0882762<br>  .1000242                             | .010942                         | 8.07             | 0.000                        |                                           | .109723                       |
| 3  <br>4  <br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0882762<br>  .1000242                                           | .010942<br>.0109478             | 8.07<br>9.14     | 0.000<br>0.000               | .0668289<br>.0785655                      | .1097236<br>.1214828          |
| 3   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0882762<br>  .1000242<br><br>or factor leve                     | .010942<br>.0109478             | 8.07<br>9.14     | 0.000<br>0.000               | .0668289<br>.0785655                      | .1097236<br>.1214828          |
| 3   4   5   5   6   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0882762<br>  .1000242<br>                                       | .010942<br>.0109478             | 8.07<br>9.14     | 0.000<br>0.000<br>change fro | .0668289<br>.0785655                      | .1097236<br>.1214828<br>evel. |
| 3   4   5   5   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0882762<br>  .1000242<br>                                       | .010942<br>.0109478<br>         | 8.07<br>9.14<br> | 0.000<br>0.000<br>change fro | .0668289<br>.0785655<br><br>om the base 1 | .1097236<br>.1214826<br>evel. |
| 3   4   5   5   Note: dy/dx for some state of the state o | .0882762<br>  .1000242<br>  .1000242<br>                         | .010942 .0109478 els is the d = | 8.07<br>9.14<br> | 0.000<br>0.000<br>change fro | .0668289<br>.0785655<br><br>om the base 1 | .1097236<br>.1214826<br>      |

#### LPM: Stata Results

Compare the results below with the results with "margins" command.

```
. reg emp i.edu female age age2 [pw=perwt]
(sum of wgt is 6.5559e+05)
                                                              Number of obs = 19175
Linear regression
                                                              F(7, 19167) = 29.93
                                                              Prob > F = 0.0000
R-squared = 0.0158
Root MSE = .23222
______
                                Robust
         emp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
          edu |

      2 | .038758 .0118878
      3.26 0.001 .015457 .0620591

      3 | .0550892 .0114168 4.83 0.000 .0327112 .0774672

      4 | .0882762 .010942 8.07 0.000 .0668289 .1097236

      5 | .1000242 .0109478 9.14 0.000 .0785655 .1214828

       female | -.0120728 .0042987 -2.81 0.005 -.0204986 -.0036471
          age | .0333868 .0232608
                                             1.44 0.151 -.0122065 .0789801
                                             -1.42 0.155
         age2 | -.0004171 .0002935
                                                                 -.0009923
                                                                               .0001582
        _cons | .2203937 .4597176 0.48 0.632
                                                                -.6806931 1.121481
```