(Conditional) Quantile Regression

In essence

- (Conditional) Quantile regression is estimating the coefficients as a conditional quantile function. Recall that OLS is a conditional mean function. Here ‘quantile’ means ‘percentile’. E.g., the 10th quantile is the same as the 10th percentile.

- There are two kinds of quantile regression models: conditional quantile regression models and unconditional quantile regression models. Unless specified otherwise, “quantile regression” usually indicates conditional quantile regression models. In this class, we will focus on the conditional quantile regression models.

- By using quantile regression, you can model the entire distribution of the data rather than estimating only the mean (= OLS).

- Understanding the mathematical logic behind the quantile regression fully will not be easy, but the estimation of the quantile regression using Stata and the interpretation of the results is relatively easy.

- The coefficients estimated in quantile regression for the quantile point q quantifies the expected change in the distribution of y for the quantile point q as x increases by 1 unit net of other covariates.

- Caution: the unit change in the conditional quantile regression models is the change in the distribution y, not the change in the expected outcome for individuals.
Graphic Explanation

- In the following graph, the left side is the usual assumption in OLS, homoscedasticity across individual variable x (= years of schooling in the example). The gaps between the less educated and the highly educated are identical across quantile points. That is, $\text{gap(high earner among BA - high earner among HSG)} = \text{gap(low earner among BA - low earner among HSG)}$.

The right side graph shows that $\text{gap(high earner among BA - high earner among HSG)}$ is much larger than $\text{gap(low earner among BA - low earner among HSG)}$. At the 90th percentile, gap(BA - HSG) is substantial, while at the 10th percentile, gap(BA - HSG) is negligible. The large gap(BA - HSG) at the 90th percentile indicates that high earners among BA earn much more than high earners among HSG, while the small gap(BA - HSG) at the 10th percentile indicates that low earners among BA earn equally low income with the lower earners among HSG.

OLS cannot measure this.
• Consider the following two distributions, A and B. In the 1st example, the shapes of A and B are almost identical. The only difference between two distributions is their mean points. The gaps between lower locations from each distribution, A and B, and the gaps between higher locations are identical. If you draw the effect of B across quantile points, you will get the graph on the right side.

Look at the 2nd example in which B has a larger variance than A. The lower points of B are lower than the lower points of A, and the higher points of B are higher than the higher points of A. Then, the gaps between A and B across quantiles will look like the graph on the right side. You will be able to figure out what are going on in the 3rd and 4th examples.

• In the following graph, the green lines show the 10th, 50th, and 90th percentile points for the
entire distribution. Three blue lines show the lines of 10th, 50th, and 90th percentile points conditional on education.

Slightly Technical Explanation

- For OLS, $E(y|x)$ is the expected y given x. Thus, $E(y|x)$ is the conditional mean. The given condition is a set of x.

- For quantile regression, $Q_q(y|x)$ is the expected quantile q given x. Thus, $Q_q(y|x)$ is the conditional quantile point for the distribution y. The given condition is a set of x.

- The quantile q is between 0 and 1 (thus, $q \in (0,1)$). It is the point by which the dependent variable y is split into proportions q below and $1-q$ above. $F(y_q) = q$ (as a function of y_q, we compute q) and $y_q = F^{-1}(q)$ (the inverse function of q, we can estimate y_q).

- $Q_q(y|x) = x'\beta_q = \beta_0q + \beta_1q x_1 + \beta_2q x_2 + \epsilon$ (1)

- For OLS, it minimize the error squared. I.e., minimize $\sum e^2$. For quantile regression, it minimize the sum that gives asymmetric penalties $(1-q)|e|$ for overprediction and $q|e|$ for underprediction. Although its computation requires linear programming methods, the quantile regression estimator is asymptotically normally distributed.

- Just as regression models conditional moments, such as predictions of the conditional mean function, we may use quantile regression to model conditional quantiles of the joint distribution of y and x.
• Let $\hat{y}(x)$ denote the predictor function and $e(x) = y - \hat{y}(x)$ denote the prediction error. Then $L(e(x)) = L(y - \hat{y}(x))$ denotes the loss associated with the prediction errors. If $L(e) = e^2$, we have squared error loss, and least squares is the optimal predictor. If $L(e) = |e|$, the optimal predictor is the conditional median, $\text{med}(y|x)$, and the optimal predictor is that $\hat{\beta}$ which minimizes $\sum |y - x^t \hat{\beta}|$.

• Both the squared-error and absolute-error loss functions are symmetric; the sign of the prediction error is not relevant. If the quantile q differs from 0.5, there is an asymmetric penalty, with increasing asymmetry as q approaches 0 or 1.

• More formally, quantile regression estimators minimize the following function:

$$Q(\beta_q) = \sum_{i: y_i \geq x_i^t \beta} q |y_i - x_i^t \beta_q| + \sum_{i: y_i < x_i^t \beta} (1 - q) |y_i - x_i^t \beta_q|$$ (2)

• Standard errors are estimated using bootstrapping method.

Differences from OLS

• While OLS is sensitive to outliers, quantile regression is much more robust to the outliers.

• Quantile regression estimates are semiparametric as quantile regression avoids assumptions about the parametric distribution of the error process. That is, unlike OLS, quantile regression does not assume normal distribution of error terms. Therefore, there are no such problems like nonnormality, heteroscedasticity. While OLS can be inefficient if the errors are highly non-normal, quantile regression is more robust to non-normal errors and outliers.

• Quantile regression provides a richer characterization of the data, allowing us to consider the impact of a covariate on the entire distribution of y, not merely its conditional mean.

• Furthermore, quantile regression is invariant to monotonic transformations, such as $\log(y)$, so the quantiles of $\log(y)$, a monotone transform of y, are $h(Q_q(y))$, and the inverse transformation may be used to translate the results back to y. As we discussed previously, this is not possible for OLS. Mean of log-transformed y is not equal to the log-transformed mean. OLS computes the geometric mean when the dependent variable is log-transformed. Unlike OLS, quantile of log-transformed y can be reconverted to original y without an issue.

Unconditional Quantile Regression Models

• You can download and install a user-written Stata program, “rifreg” from https://faculty.arts.ubc.ca/nfortin/datahead.html.
• Key Idea: The results of conditional quantile regression (CQR) show how much y will change for distribution y as x changes by 1 unit at quantile point q for a given set of other covariates. But it does not quantify how much y will shift at quantile q for the entire population distribution as x changes by 1 unit. Nor does it quantify the expected change in individual outcomes. For example, what will be the value of the 10th quantile point if everyone has college education? Except special cases, CQR cannot answer this question. Firpo et al.’s unconditional quantile regression models (UQR) makes this possible by using so-called “recentered influence function.”

• The interpretation of UQR is the same as OLS.

• If you’re interested in the showing the group difference across quantiles, CQR is enough. If you’re interested in the net effect of x on y for the entire population, use UQR.
Example 1. Estimating QR without a covariate is the same as computing percentile points with standard errors.

```
. sum earning, d

                        earnings
-------------------------------------------------------------
Percentiles       Smallest
 1%       2770.333       .8541667
 5%       9879.678       .8541667
 10%      15295.54       .9571984     Obs     204,402
 25%      25783.88       3.322048     Sum of Wgt.   204,402
 50%      40000.00       Mean      52904.92
 75%      60000.00       684085.2
 90%      137654.00      684085.2   Variance   2.83e+09
 95%      321032.70      745147.7   Skewness   3.666459
 99%      745147.70      745147.7  Kurtosis   20.81034

. qreg earning, q(25)

.25 Quantile regression
Number of obs = 204,402
------------------------------------------------------------------------------
  earning | Coef.  Std. Err.  t    P>|t|     [95% Conf. Interval]
-------------+--------------------------------------------------
   _cons | 25783.88   44.54687  578.80 0.000   25696.56    25871.19
------------------------------------------------------------------------------

. qreg earning, q(50)

Median regression
Number of obs = 204,402
------------------------------------------------------------------------------
  earning | Coef.  Std. Err.  t    P>|t|     [95% Conf. Interval]
-------------+--------------------------------------------------
   _cons | 40000.00    51.10088  782.77 0.000    39899.84    40100.16
------------------------------------------------------------------------------

. qreg earning, q(75)

.75 Quantile regression
Number of obs = 204,402
------------------------------------------------------------------------------
  earning | Coef.  Std. Err.  t    P>|t|     [95% Conf. Interval]
-------------+--------------------------------------------------
   _cons | 60000.00   116.44344  515.27 0.000    59771.77    60228.23
------------------------------------------------------------------------------
```
Example 2. Quantile regression between 2 groups.

(1) Quantile Earnings Estimates for whites

```
. qreg earning if white==1, q(25)
------------------------------------------------------------------------------
earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _cons | 25211.85 42.43177 594.17 0.000 25128.68 25295.01
------------------------------------------------------------------------------
```

```
. qreg earning if white==1, q(50)
------------------------------------------------------------------------------
earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _cons | 39400 64.47439 611.10 0.000 39273.63 39526.37
------------------------------------------------------------------------------
```

```
. qreg earning if white==1, q(75)
------------------------------------------------------------------------------
earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _cons | 60000 75.53552 794.33 0.000 59851.95 60148.05
------------------------------------------------------------------------------
```

(2) Quantile Earnings Estimates for Asian Americans

```
. qreg earning if white==0, q(25)
------------------------------------------------------------------------------
earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _cons | 29416.25 257.3963 114.28 0.000 28911.72 29920.78
------------------------------------------------------------------------------
```

```
. qreg earning if white==0, q(50)
------------------------------------------------------------------------------
earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _cons | 45547.84 323.3055 140.88 0.000 44914.12 46181.56
------------------------------------------------------------------------------
```

```
. qreg earning if white==0, q(75)
------------------------------------------------------------------------------
earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _cons | 70000 489.6096 142.97 0.000 69040.3 70959.7
------------------------------------------------------------------------------
```
(3) Quantile regression on earnings: Dep = earnings, Independent = Asian. The coefficients of Asian Americans should be equal to (2) - (1). The constant shows the expected quantile estimates for the reference group.

```
. qreg earning Asian, q(25)
.25 Quantile regression Number of obs = 204,402
Raw sum of deviations 1.87e+09 (about 25783.875)
Min sum of deviations 1.87e+09 Pseudo R2 = 0.0007
------------------------------------------------------------------------------
         earning | Coef. Std. Err.  t  P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------
    Asian | 4204.402  170.1813  24.71  0.000     3870.851   4537.953
     _cons | 25211.85   44.98773  560.42  0.000     25123.67   25300.02
------------------------------------------------------------------------------

. qreg earning Asian, q(50)
Median regression Number of obs = 204,402
Raw sum of deviations 2.91e+09 (about 40000)
Min sum of deviations 2.91e+09 Pseudo R2 = 0.0012
------------------------------------------------------------------------------
         earning | Coef. Std. Err.  t  P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------
    Asian | 6147.836  241.9535  25.41  0.000     5673.613   6622.059
     _cons | 39400.00   63.96085  616.00  0.000     39274.64   39525.36
------------------------------------------------------------------------------

. qreg earning Asian, q(75)
.75 Quantile regression Number of obs = 204,402
Raw sum of deviations 3.13e+09 (about 60000)
Min sum of deviations 3.12e+09 Pseudo R2 = 0.0017
------------------------------------------------------------------------------
         earning | Coef. Std. Err.  t  P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------
    Asian | 10000.00  305.5854  32.72  0.000     9401.06   10598.94
     _cons | 60000.00  80.78206  742.74  0.000     59841.67   60158.33
------------------------------------------------------------------------------
```
Example 3. Quantile regression coefficients estimated can be directly transformed into log and anti-log without bias.

```stata
. qreg earning i.Asian##i.edu, q(90)
.9 Quantile regression
Raw sum of deviations 2.50e+09 (about 94000)
Min sum of deviations 2.09e+09
Pseudo R2 = 0.1607

| earning | Coef. Std. Err. t  P>|t|  [95% Conf. Interval] |
|---------|-------------------|-----------|--------|-----------------|
| 1.Asian | 5694.902 9866.125 0.58 0.564 -13642.46 25032.27 |
| edu     | 2 | 8593.77 1732.837 4.96 0.000 5197.451 11990.09 |
| 3 | 23432.25 1733.239 13.52 0.000 20035.14 26829.36 |
| 4 | 73432.25 1808.311 40.61 0.000 69888 76976.5 |
| 5 | 163995.3 1982.974 82.70 0.000 160108.7 167881.8 |
| Asian#edu | |
| 1 2 | -4856.422 10856.66 -0.45 0.655 -26135.21 16422.36 |
| 1 3 | -9260.91 10352.43 -0.89 0.371 -29551.42 11029.6 |
| 1 4 | -30694.9 10244.58 -3.00 0.003 -50774.02 -10615.79 |
| 1 5 | -22686.43 10482.92 -2.16 0.030 -43232.7 -2140.166 |
| _cons | 51567.75 1544.88 33.38 0.000 48539.82 54595.68 |

. qreg llearning i.Asian##i.edu, q(90)
Iteration 1: WLS sum of weighted deviations = 50137.587
.9 Quantile regression
Raw sum of deviations 28943.93 (about 11.45105)
Min sum of deviations 24886.29
Pseudo R2 = 0.1402

| llearning | Coef. Std. Err. t  P>|t|  [95% Conf. Interval] |
|-----------|-------------------|-----------|--------|-----------------|
| 1.Asian   | 0.1047525 .0748318 1.40 0.162 -.0419159 .251421 |
| edu       | 2 | .1541367 .0131431 11.73 0.000 .1283765 .1798968 |
| 3 | .3745918 .0131461 28.49 0.000 .3488257 .4003579 |
| 4 | .885417 .0137155 64.56 0.000 .8585349 .9122991 |
| 5 | 1.430357 .0150403 95.10 0.000 1.400878 1.459836 |
| Asian#edu | |
| 1 2 | -.0909119 .0823447 -1.10 0.270 -.2523054 .0704817 |
| 1 3 | -.1534672 .0785202 -1.95 0.051 -.307365 .0004306 |
| 1 4 | -.3278961 .0777022 -4.22 0.000 -.4801905 -.1756017 |
| 1 5 | -.1868572 .07951 -2.35 0.019 -.3426948 -.0310196 |
```
In the above example, the constant (= the expected 90th percentile point for whites without high school diploma) is 10.85065 in the 2nd model. When anti-log is taken, \(\exp(10.85065) = 51567.66 \) which is almost identical to the constant of the 1st model.

For the expected 90th percentile point for whites without high school diploma from the 2nd model is 10.85065 + .1047525 = 10.9554. By taking anti-log, it is 57262.43. From the 1st model, it is 51567.75 + 5694.902 = 57262.65.