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Week 10. Panel Models 1

Introduction

• So far, we discussed statistical models to analyze a cross-sectional dataset. This week we will
discuss statistical models to analyze panel data.

• Panel data, also known as longitudinal data or cross-sectional time series data in some special
cases, is data that is derived from observations over time on a number of cross-sectional units
like individuals, households, firms, or governments.

• Panel methods are more close to causality implications than cross-sectional methods because
panel models estimate how the changes over time in explanatory variables are associated with
the (sometimes lagged) change over time in dependent variable. By doing so, we can rule out
the possibility that unobserved heterogeneity across cross-sectional units is a driving force
which makes an independent variable statistically significant even though the real association
between independent and dependent variables is null.

• Panel data allows you to control for variables you cannot observe or measure like cultural
factors or difference in business practices across companies; or variables that change over
time but not across entities (i.e. national policies, federal regulations, international agree-
ments, etc.). In case of individual, you can control for unobservable time-invariant individual
characteristics (e.g., IQ or some attitude). This is, it accounts for individual heterogeneity.

• With panel data you can include variables at different levels of analysis suitable for multilevel
or hierarchical modeling. For example, if you’re analyze income growth of family members
using growth curve models, your level 1: individual-time, level 2: individual, and level 3:
family.

• The most commonly estimated panel models are probably fixed effects models (FEM) and
random effects models (REM).

• REM will yield statistically significant results more likely than FEM (we will discuss why that
is the case later). But the assumptions of REM is much stronger than FEM and unfortunately
those assumptions are rarely met with real data. Therefore, FEM is almost always a better
choice than REM.

• In the early 2000s, you may be able to publish a paper in a top sociological journal with
REM, but now it is impossible. Halaby’s (2004, ARS) paper is basically to say that “don’t
use REM.”

Panel Data Structure

• Typical data structure
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id year y x1 x2 x3

1 2010 10.0 4 25 0
1 2011 10.2 4 26 0
1 2012 10.5 4 27 1
2 2010 9.1 2 30 1
2 2011 9.2 2 31 1
2 2012 9.0 2 32 0
2 2013 9.3 2 33 1
3 2010 10.5 5 28 0
3 2011 10.6 5 29 1
3 2012 10.7 5 30 1

• You need to reshape the data to “long” if your data format is “wide.” Use the Stata command,
reshape.

• Example 1: wide format

famid faminc96 faminc97 faminc98

1. 3 75000 76000 77000

2. 1 40000 40500 41000

3. 2 45000 45400 45800

• Example 1: long format

. reshape long faminc, i(famid) j(year)

famid year faminc

1. 1 96 40000

2. 1 97 40500

3. 1 98 41000

4. 2 96 45000

5. 2 97 45400

6. 2 98 45800

7. 3 96 75000

8. 3 97 76000

9. 3 98 77000

• In the 1st example, the unit of observation for the long format is “family-year”. The unit of
observation for the wide format is family.

• Example 2: wide format

famid birth ht1 ht2

1. 1 1 2.8 3.4

2. 1 2 2.9 3.8

3. 1 3 2.2 2.9

4. 2 1 2 3.2

5. 2 2 1.8 2.8

6. 2 3 1.9 2.4

7. 3 1 2.2 3.3

8. 3 2 2.3 3.4

9. 3 3 2.1 2.9

• Example 2: long format
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. reshape long ht, i(famid birth) j(age)

famid birth age ht

1. 1 1 1 2.8

2. 1 1 2 3.4

3. 1 2 1 2.9

4. 1 2 2 3.8

5. 1 3 1 2.2

6. 1 3 2 2.9

7. 2 1 1 2

8. 2 1 2 3.2

9. 2 2 1 1.8

10. 2 2 2 2.8

11. 2 3 1 1.9

12. 2 3 2 2.4

13. 3 1 1 2.2

14. 3 1 2 3.3

15. 3 2 1 2.3

16. 3 2 2 3.4

17. 3 3 1 2.1

18. 3 3 2 2.9

• In the 2nd example, the unit of observation for the long format is “each birth within family
(individual)-age”. The unit of observation for the wide format is individual (within family).

• Using the reshape command, you can convert the long format into the wide format.

Fixed Effects Model (FEM): In Essence

• FEM is basically OLS with many dummy variables which identify each cross-sectional unit
of observation.

• OLS
yit = α+

∑
βjxijt +

∑
γkzik + eit (1)

where xijt is a vector of time-variant variable j at time t for individual i and zik is a vector
of time invariant variable k for individual i. Each individual i has t number of observations.

• Fixed Effects Model
yit = αi +

∑
βjxijt + eit (2)

where αi is constant for individual i. OLS has only one intercept, but FEM has i number of
intercepts (α+ui). Because all time-invariant characteristics for individual i is accounted for
by αi, the effects of time-invariant characteristics zik are dropped from the model.

• FEM is basically OLS with many dummy variables which identify each cross-sectional unit
of observation. If you run OLS with individual specific fixed effects (i.e., add all dummies
which identify individuals), you will get the identical results with FEM. This OLS method is
usually called the dummy variable regression.

• Interpretation: As xj changes 1 unit over time, y is expected to change by βj net of other
covariates.
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An Example: Fixed Effects Model Result

. reg lnwage age female i.educ

Source | SS df MS Number of obs = 951

-------------+------------------------------ F( 5, 945) = 98.23

Model | 99.9338627 5 19.9867725 Prob > F = 0.0000

Residual | 192.269618 945 .203459913 R-squared = 0.3420

-------------+------------------------------ Adj R-squared = 0.3385

Total | 292.203481 950 .307582611 Root MSE = .45107

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0027996 .0015268 1.83 0.067 -.0001966 .0057959

female | -.3702238 .0302035 -12.26 0.000 -.4294974 -.3109502

|

educ |

2 | .2517716 .0407223 6.18 0.000 .171855 .3316883

3 | .3042206 .0554722 5.48 0.000 .1953575 .4130836

4 | .6852116 .0444734 15.41 0.000 .5979335 .7724898

|

_cons | 4.457611 .0810778 54.98 0.000 4.298498 4.616725

------------------------------------------------------------------------------

. xtset pid year

. xtreg lnwage age female i.educ, fe

note: female omitted because of collinearity

Fixed-effects (within) regression Number of obs = 951

Group variable: pid Number of groups = 229

R-sq: within = 0.1029 Obs per group: min = 2

between = 0.0006 avg = 4.2

overall = 0.0095 max = 8

F(4,718) = 20.60

corr(u_i, Xb) = -0.6218 Prob > F = 0.0000

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0430487 .0052149 8.25 0.000 .0328103 .0532871

female | 0 (omitted)

|

educ |

2 | .1104229 .1140319 0.97 0.333 -.1134529 .3342987

3 | .3808312 .1816478 2.10 0.036 .024207 .7374555

4 | .3967386 .1690044 2.35 0.019 .0649366 .7285405
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|

_cons | 2.855121 .229647 12.43 0.000 2.404261 3.305981

-------------+----------------------------------------------------------------

sigma_u | .65866485

sigma_e | .29513481

rho | .83279476 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(228, 718) = 8.07 Prob > F = 0.0000

• R-sq: within: The proportion of the variance within group over t accounted for by ex-
planatory variables.

• R-sq: between: The proportion of the variance across group i accounted for by explanatory
variables. For FEM, this is fixed.

• R-sq: overall: The proportion of the overall variance accounted for by explanatory vari-
ables.

• corr(u i, Xb: individual fixed effects ui are correlated with the regressors. In REM, this is
assumed to be zero.

• Number of obs: the total number of observations (e.g., individual-time)

• Number of groups: the total number of groups (e.g., individual)

• Obs per group: min: the minimum number of t.

• Obs per group: avg: the average number of t.

• Obs per group: max: the maximum number of t.

• sigma u: standard deviation of ui. That is, the standard deviation of the difference across
group i.

• sigma e: standard deviation of ei. That is, the standard deviation of the residuals across it
after accounting for the difference across group i.

• rho: ρ =
σ2u

σ2u + σ2e
, the proportion of the total variance that can be accounted for by the

difference across group is.

Fixed Effects Model (FEM): More Detailed Explanation

• FEM. Fixed effect estimates are a way to remove group i specific fixed effects from your
estimates. It can be done by doing fixed effects transformation as follows:

1.
yit = αi +

∑
βjxijt + eit (3)
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2. Now, for each i, average this equation over time. We get

ȳi = αi +
∑

βj x̄ij + ēi (4)

3. If we subtract equation 4 from equation 3 for each t, we wind up with:

yit − ȳi = (αi − αi) +
∑

βj(xijt − x̄ij) + (eit − ēi)

ÿit =
∑

βj ẍijt + ëit
(5)

Now we estimate with “demeaned-data”.

• This fixed effects transformation is also called within transformation. Equation 5 is the same
as OLS. This OLS is based on the time-demeaned variables is called the fixed effects estimator
or the within estimator. That is, it is OLS which uses the time variation in y and x within
each cross-sectional observation.

• The between estimator is obtained as the OLS estimator on the cross-sectional equation 4.

• With FEM, we are not interested in the between estimator because it is biased when αi is
correlated with x̄i. If not, we can use REM.

• The fixed effects estimator allows for arbitrary correlation between αi and the explanatory
variables in any time period. Because of this, any explanatory variable that is constant
over time for all i gets swept away by the fixed effects transformation. Put differently, all
time-invariant individual heterogeneity are taken into account in FEM.

• Beyond this, FEM has the same assumptions with OLS. The idiosyncratic error eit should
be uncorrelated with each explanatory variable across all time periods. The errors are ho-
moskedastic and serially uncorrelated.

• Regarding df , in OLS we have total n = i∗ t, thus df = i∗ t−k, but in FEM, df = i∗ t− i−k.

• R2 of equation 4 is between-R2. R2 of equation 5 is within-R2.

• Standard deviation of ēi of equation 4 is sigma u. Standard deviation of ëit of equation 5 is
sigma e.

• The overall intercept of FEM is actually the average of the individual-specific intercepts,
which is an unbiased, consistent estimator of α = E(αi).

• Although time-constant variables cannot be included by themselves in a fixed effects model,
they can be interacted with variables that change over time and, in particular, with year
dummy variables.

• If you transform all time-varying independent variable by doing group-specific mean-centering,
you can estimate OLS with both time-invariant covariates and time-varying covariates. The
coefficients estimated for group-specific mean-centered time-varying covariates will be identi-
cal with those of FEM.

Fixed Effects Model (FEM) with Time-invariant Covariates
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• If you transform all time-varying independent variable by doing group-specific mean-centering,
you can estimate OLS with both time-invariant covariates and time-varying covariates. The
coefficients estimated for group-specific mean-centered time-varying covariates will be identi-
cal with those of FEM.

•
yit = α+

∑
βj(xijt − x̄ij) +

∑
γkzik + eit (6)

. egen mage = mean(age), by(pid)

. tab educ, gen(educ)

. egen meduc1 = mean(educ1), by(pid)

. egen meduc2 = mean(educ2), by(pid)

. egen meduc3 = mean(educ3), by(pid)

. egen meduc4 = mean(educ4), by(pid)

. gen cage = age-mage

. gen ceduc1 = educ1 - meduc1

. gen ceduc2 = educ2 - meduc2

. gen ceduc3 = educ3 - meduc3

. gen ceduc4 = educ4 - meduc4

. reg lnwage cage female ceduc2-ceduc4

Source | SS df MS Number of obs = 951

-------------+------------------------------ F( 5, 945) = 40.38

Model | 51.4446079 5 10.2889216 Prob > F = 0.0000

Residual | 240.758873 945 .254771294 R-squared = 0.1761

-------------+------------------------------ Adj R-squared = 0.1717

Total | 292.203481 950 .307582611 Root MSE = .50475

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cage | .0430487 .0089188 4.83 0.000 .0255458 .0605516

female | -.4323907 .0328027 -13.18 0.000 -.4967654 -.3680161

ceduc2 | .1104229 .1950209 0.57 0.571 -.2723013 .4931471

ceduc3 | .3808312 .3106597 1.23 0.221 -.2288314 .9904938

ceduc4 | .3967385 .2890366 1.37 0.170 -.1704894 .9639665

_cons | 4.899105 .0224388 218.33 0.000 4.855069 4.94314

------------------------------------------------------------------------------

• In the above result, the constant is the expected y for men when all x’s are set at their group
specific means. The effect of being female is the (dis)advantage of being female when all x’s
are set at their group specific means.

First Difference Model (FDM)
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• If there are two observations for 2 time points 1 and 2 for the same individual (group) i, then
we can estimate the following model:

(yi2 − yi1) = γ0 +
∑

βk(xik2 − xik1) + (ei2 − ei1)

∆yi = γ0 +
∑

βk∆xik + ∆ei
(7)

where γ0 is a fixed effect of time 2.

• Equation 7 is identical with the following equation:

yit = β0 + γ0 +
∑

βkxikt + (αi + uit) (8)

• That is, FDM is OLS when all dependent and independent variables are transformed into the
differences between time 1 and time 2.

• FDM is identical with FEM when the number of time is two. When T ≥ 3, FDM is not equal
to FEM.

• FDM can be used for data with T ≥ 3.

∆yit =
∑

γtTt +
∑

βk∆xikt + ∆eit (9)

where Tt is a set of dummy variables of time t.

• The key assumption is that the idiosyncratic errors are uncorrelated with the explanatory
variable in each time period: Cov(xijt, eis) = 0 for all, t and j. This assumption is not
necessarily met with real data. If not, there can be serious biases. Thus, when T ≥ 3, FEM
is better than FDM.

Random Effects Model (REM)

• REM is the same as FEM but we assume that the unobserved individual (group) specific
effect αi is uncorrelated with each explanatory variable: Cov(xijt, αi) = 0. That is, there is
one more assumption on top of all assumptions of FEM.

• In fact, if this assumption is met, we simply can estimate OLS. No panel technique is necessary.

• However, because αi is in the composite error (that is, αi + eit constitutes the total error vit,
vit = αi + eit) in each time period, total errors are serially correlated across time.

• Thus, under the random effects assumptions, Corr(vit, vis) = σ2a/(σ
2
a+σ2e). This (necessarily)

positive serial correlation in the error term can be substantial, and, because the usual pooled
OLS standard errors ignore this correlation, they will be incorrect, as will the usual test
statistics.

• To fix this problem, we need to transform all variables by θ = 1−
√

(σ2e/(σ
2
e + Tσ2a) which is

between 0 and 1.

• New equation becomes

yit − θȳi = β0(1 − θ) +
∑

βk(xikt − θx̄ik) + (vit − θv̄i) (10)
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• This is using quasi-demeaned data. Recall that FEM is using demeaned data.

• The random effects transformation subtracts a fraction of that time average, where the frac-
tion depends on σ2e , σ2a, and the number of time periods, T .

• The transformation in equation 10 allows for explanatory variables that are constant over
time, and this is one advantage of random effects (RE) over either fixed effects or first dif-
ferencing. This is possible because RE assumes that the unobserved effect is uncorrelated
with all explanatory variables, whether the explanatory variables are fixed over time or not.
Thus, in our model, we can include a variable such as education even if it does not change
over time. But we are assuming that education is uncorrelated with ai, which contains ability
and family background (of course this is unrealistic). In many applications, the whole reason
for using panel data is to allow the unobserved effect to be correlated with the explanatory
variables.

• Example: REM

. xtreg lnwage age female i.educ, re

Random-effects GLS regression Number of obs = 951

Group variable: pid Number of groups = 229

R-sq: within = 0.0364 Obs per group: min = 2

between = 0.3724 avg = 4.2

overall = 0.3306 max = 8

Wald chi2(5) = 160.90

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0074483 .0024211 3.08 0.002 .0027031 .0121935

female | -.3697987 .0522792 -7.07 0.000 -.472264 -.2673333

|

educ |

2 | .23775 .0628876 3.78 0.000 .1144926 .3610074

3 | .3923649 .0885583 4.43 0.000 .2187938 .5659361

4 | .6595233 .0735716 8.96 0.000 .5153256 .803721

|

_cons | 4.252047 .1289119 32.98 0.000 3.999385 4.50471

-------------+----------------------------------------------------------------

sigma_u | .34085686

sigma_e | .29513481

rho | .57152131 (fraction of variance due to u_i)

------------------------------------------------------------------------------

OLS vs. REM vs. FEM
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• You can do Hausman test to determine between FEM and REM.

. xtreg lnwage age female i.educ, fe

. estimates store fe

. xtreg lnwage age female i.educ, re

. estimates store re

. hausman fe re

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| fe re Difference S.E.

-------------+----------------------------------------------------------------

age | .0430487 .0074483 .0356004 .0046189

educ |

2 | .1104229 .23775 -.1273271 .0951232

3 | .3808312 .3923649 -.0115337 .158598

4 | .3967386 .6595233 -.2627847 .1521503

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 69.20

Prob>chi2 = 0.0000

When the null hypothesis is fail to reject, we can use REM.

• In reality, that happens very rarely.

• By the way, the coefficient estimates with REM is somewhere middle between OLS and FEM.


