Week 11. Panel Models 2

Types of Panel Models

• FEM: Fixed Effects Model

$$y_{it} = \alpha + \sum \beta_k X_{ikt} + u_i + e_{it}$$
 or,

$$y_{it} = \alpha_i + \sum \beta_k X_{ikt} + e_{it}$$

• FDM: First Difference Model

$$\Delta y_i = \alpha + \sum \beta_k \Delta X_{ik} + e_i$$

• REM: Random Effects Model

$$(y_{it} - \theta \bar{y}_i) = \alpha(1 - \theta) + \sum \beta_k (X_{ikt} - \theta \bar{X}_{ik}) + (e_{it} - \theta \bar{e}_i)$$

• CRE (The Correlated Random Effects Model) = Hybrid Model

$$y_{it} = \alpha + \sum \beta_k X_{ikt} + \sum \gamma_l \bar{X}_{ik} + \sum \delta_m Z_i + \epsilon_i + e_{it}$$

where Z_i is a vector of time-invariant covariates,

$$u_i = \sum \gamma_l \bar{X}_{ik} + \sum \delta_m Z_i + \epsilon_i$$

- RCM: Random Coefficients Model (or Mixed Model, or Linear Mixed Model or Multilevel Growth Curve Model)
- There are many other panel models which we will not discuss.

FEM: Interaction of Time-varying covariates \times Time-invariant covariates and Interaction of Time-varying covariates \times Time-varying covariates

- Interaction of Time-varying covariates $(X_1) \times \text{Time-invariant covariates}(X_2)$: As X_1 changes by 1-unit, how much y will change differently by X_2 .
- Interaction of Time-varying covariates $(X_1) \times \text{Time-varying covariates}(X_3)$: As X_1 increases by 1-unit, how much y will change differently when X_3 increases by 1-unit.
- In the below example,
 - SSS: Subjective social standing (1: lowest, 6: highest)
 - highim2pop: % high-status immigrants by region
 - lowercl: Low-class natives, time-invariant class status
 - highercl: High-class natives, time-invariant class status
 - rank1: Relative income rank by year, time-varying variable.
 - marst, edu: marital status, and education. Both are time-varying.

Fixed-effects (within) Group variable: pid R-sq: within = 0.0313 between = 0.1736 overall = 0.1417	regression		Number	of group: r group: r a	= 155,3 os = 28,3 nin = avg = 3	1
		(Std. E	rr. adjus	sted for	28,241 cluste	ers in pid)
SSS I	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
highim2pop	0929533	.0467272	-1.99	0.047	1845409	0013656
1.lowercl lowercl#c.highim2pop 1		,	0.22	0.825	1716593	.2153034
1.uppercl uppercl #c.highim2pop	0		0.22	0.020	.1113333	.2100001
1	.1930963	.0809319	2.39	0.017	.0344659	.3517267
rank1 c.highim2pop#c.rank1		.0001519	26.79 1.33		.0037704 0003484	.0043658 .0018094
age c.age#c.age			-6.35 2.55		0240094 .0000151	0126848 .0001154
female	0	(omitted)				
marst 2			-2.56	0.011 0.019	.0240644 23291 1650748 0688289	0307088
famnum	011906	.004652	-2.56	0.010	0210241	0027879
 edu	0502888 09479 1348723 0671691	.0191458 .019817 .0317038 .0547998	-2.63 -4.78 -4.25 -1.23	0.009 0.000 0.000 0.220	0878155 1336322 1970132 1745793	0127621 0559478 0727313 .0402411

Random Coefficients Model: RCM

- <u>In a Nutshell</u>: In OLS, we have one intercept and one coefficient for each variable (e.g., time). In RCM, this assumption can be relaxed by allowing the intercept and slope to vary across individuals and be predicted by other covariates. That is, OLS models estimate means, while RCM models estimate both means and variance components.
- Random Coefficients Model = a multi-level model. Here the 1st level is individual and the 2nd level is individual-time.
- Key Background Idea: Independence of the observations is a key assumption of many standard statistical methods including OLS. Common examples of data structures that do not fit into such a framework arise in longitudinal analysis, in which observations are made on subjects at subject-specific sequences of time points, and in studies that involve subjects (units) occurring naturally in clusters (or groups), such as individuals within families, school children within classrooms, employees within companies, and the like. The assumption of independence of the observational units is not tenable when observations within a cluster tend to be more similar than observations in general. REM is a relaxation of this assumption of independence of the observational units.
- In OLS,

$$y_{it} = \alpha + \sum \beta_k X_{ikt} + e_{it}$$

If there is only one independent variable, T in OLS,

$$y_{it} = \alpha + \beta T_{it} + e_{it}$$

We have usual assumptions such as normality, independence and equal variance (homoscedasticity) of the deviations e_{it} . In this case, $e_{it} \sim N(0, \sigma^2)$, i.i.d., implies that the regressions within the clusters/individuals/groups i have a common vector of coefficients β .

- We only have one intercept and one coefficient. Thus, they are fixed across observations.
- This restriction (= coefficients estimated are fixed) can be relaxed by allowing the regressions to differ in their intercepts and slopes. In REM, we model how systematically intercept and coefficients across clusters/groups/individuals.

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

Here, α and β are fixed effects and b_{0i} and b_{1i} are random effects.

$$b_{0i} = b_{00} + u_{0i}$$
(1)

$$b_{1i} = b_{00} + u_{0i}$$
$$b_{1i} = b_{10} + u_{1i}$$

- Now we have three error components: ε_{it} , u_{0i} , and u_{1i} . Recall that, in OLS, we only have one error component ε_{it} which is normally distributed with mean 0, $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2)$. Like OLS, we assume that ε_{it} is normally distributed with mean 0 and variance of σ_{ε}^2 .
- The other two error components are also assumed to be normally distributed with mean 0. That is, $u_{0i} \sim N(0, \sigma_{u_0}^2)$ and $u_{1i} \sim N(0, \sigma_{u_1}^2)$

- The main concern is how these three error components (= ε_{it} , u_{0i} , and u_{1i}) are correlated with each other.
- For all regression models, ε_{it} is assumed to be uncorrelated with other components. Otherwise, the coefficients estimated are biased. Thus, the error structure of the other two errors (= the variance-covariance matrix of u_{0i} and u_{1i}) is uncorrelated with ε_{it} . Let's say the variance-covariance matrix of u_{0i} and u_{1i} is G. The covariance between G and ε_{it} is assumed to be zero. Then,

$$Var \begin{bmatrix} u_{0i}, u_{1i} \\ \varepsilon_{it} \end{bmatrix} = \begin{bmatrix} G & 0 \\ 0 & \sigma_{\varepsilon_{it}}^2 \end{bmatrix}$$

• For u_{0i} and u_{1i} , it is assumed that u_{0i} and u_{1i} are jointly normally distributed with mean 0, the variances of $\sigma_{u_0}^2$ and $\sigma_{u_1}^2$, and the covariance of $\rho(u_0, u_1)$. That is,

$$Var \begin{bmatrix} u_{0i} \\ u_{1i} \end{bmatrix} = \begin{bmatrix} \sigma_{u_0}^2 & \rho_{u_0, u_1} \\ \rho_{u_0, u_1} & \sigma_{u_1}^2 \end{bmatrix} \sim N \begin{bmatrix} \sigma_{u_0}^2 & \rho_{u_0, u_1} \\ \rho_{u_0, u_1} & \sigma_{u_1}^2 \end{bmatrix}$$

Sometimes it is assumed that $\rho_{u_0,u_1} = 0$.

• Now we add independent variables to account for the random effects.

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

Here, α and β are fixed effects and b_{0i} and b_{1i} are random effects.

$$b_{0i} = b_{00} + \sum_{i} b_{0k} X_{ikt} + u_{0i}$$

$$b_{1i} = b_{10} + \sum_{i} b_{1k} X_{ikt} + u_{1i}$$
(2)

• Combining the fixed and random components, equation (2) becomes equation (3):

$$y_{it} = (\alpha + b_{00} + \sum b_{0k} X_{ikt} + u_{0i}) + (\beta + b_{10} + \sum b_{1k} X_{ikt} + u_{1i}) T_{it} + \varepsilon_{it}$$

$$= (\alpha + b_{00}) + (\beta + b_{10}) T_{it} + \sum b_{0k} X_{ikt} + \sum b_{1k} (X_{ikt} \times T_{it})$$

$$+ u_{0i} + u_{1i} T_{it} + \varepsilon_{it}$$

$$= \alpha' + \beta' T_{it} + \sum b_{0k} X_{ikt} + \sum b_{1k} (X_{ikt} \times T_{it}) + (u_{0i} + u_{1i} T_{it} + \varepsilon_{it})$$
(3)

• That is, T_{it} , X_{ikt} , and $(X_{ikt} \times T_{it})$ are a set of covariates you need to add in your model.

RCM: Random Intercept without Other Covariates and Fixed Slope

$$y_{it} = (\alpha + b_{0i}) + \beta T_{it} + \varepsilon_{it}$$
$$b_{0i} = b_{00} + u_{0i}$$

$$Var \begin{bmatrix} u_{0i} \\ \epsilon_{it} \end{bmatrix} = \sim N \begin{bmatrix} \sigma_{u_0}^2 & 0 \\ 0 & \sigma_{\epsilon_{it}}^2 \end{bmatrix}$$

mixed lnwage t								
erforming EM op erforming gradi		otimiz:	ation:					
omputing standa	-	, o i i i i i						
ixed-effects ML	regression				Number of	obs	=	840
roup variable:	ind				Number of	groups	=	42
					Obs per g			
								20
						_		20.0
						max	=	20
					Wald chi2	(1)	=	369.69
g likelihood =	1273.1363				Wald chi2 Prob > ch			
og likelihood = lnwage	 Coef.				Prob > ch:	i2 [95% Co	=	0.0000
lnwage time	Coef. .0051957	.0002	 702 19	 .23	Prob > ch:	i2 [95% Co .004666	= nf. 	0.0000 Interval] .0057254
lnwage time	Coef.	.0002	 702 19	 .23	Prob > ch:	i2 [95% Co .004666	= nf. 	0.0000 Interval] .0057254
lnwage time	Coef. .0051957 2.523098	.0002	702 19 276 62 Estimate	9.23 2.10 Std	Prob > ch:	i2 [95% Co .004666 2.4434 [95% Co	= nf. 1 7	0.0000 Interval] .0057254 2.602727
lnwage time _cons Random-effects	Coef. .0051957 2.523098	.0002	702 19 276 62 	0.23 2.10 Std	Prob > ch:	i2 [95% Co .004666 2.4434 	=nf1	0.0000 Interval] .0057254 2.602727

RCM: Random Intercept and Random Slope without Other Covariates

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

$$b_{0i} = b_{00} + u_{0i}$$

$$b_{1i} = b_{10} + u_{1i}$$

$$Var \begin{bmatrix} u_{0i} \\ u_{1i} \end{bmatrix} = \sim N \begin{bmatrix} \sigma_{u_0}^2 & 0 \\ 0 & \sigma_{u_1}^2 \end{bmatrix}$$

	e time ind:	OTING				
	optimization: adient-based op ndard errors:	timization	:			
lixed-effects	ML regression			Number of	obs =	840
roup variable	e: ind			Number of	groups =	42
				Obs per g	roup:	
					min =	20
					avg =	20.0
					max =	20
				Wald chi2	(1) =	37.83
og likelihood	d = 1477.8734			Prob > ch	i2 =	0.0000
lnwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	 .0051957					
_cons	2.523098	.0455192	55.43	0.000	2.433882	2.612314
Random-effec	cts Parameters	Estim	ate Sto	d. Err.	[95% Conf.	Interval]
	 ent					
ind: Independe	<pre>var(time)</pre>	.0000	284 6.5	54e-06	.0000181	.0000446
nd: Independe	, ,			189902		
ind: Independe						
nd: Independe	var(_cons) var(Residual)	•		000531	.0009331	.0011416

RCM: Random Intercept net of Other Covariates and Fixed Slope

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

 $b_{0i} = b_{00} + \sum b_{0k}X_{ikt} + u_{0i}$

rforming EM optimization	on:				
rforming gradient-based mputing standard errors	d optimizat	ion:			
xed-effects ML regressi	ion		Number	of obs =	840
oup variable: ind			Number	of groups =	42
			Obs per	group:	
			P	-	20
					20.0
				max =	
			Wald ch	i2(3) =	830.51
				(-,	
g likelihood = 1409.98	354		Prob >	chi2 =	0.0000
g likelihood = 1409.98	354		Prob >	chi2 =	0.0000
lnwage Coef	. Std. Er:		P> z		
lnwage Coef	. Std. Er:	 1 15.66	P> z 	[95% Conf	. Interval]
lnwage Coef time .0066589 union .5420962	Std. Er: 0 .000425 2 .055377	1 1 15.66 1 9.79	P> z 	[95% Conf .0058257 .4335592	. Interval]
lnwage Coef time .0066589 union .5420962 part 7703482	Std. Er: 0 .000425 2 .055377 2 .076617	1 15.66 1 9.79 8 -10.05	P> z 	[95% Conf .0058257 .4335592 9205164	. Interval]
lnwage Coef time .0066589 union .5420962	Std. Er: 0 .000425 2 .055377 2 .076617	1 15.66 1 9.79 8 -10.05	P> z 	[95% Conf .0058257 .4335592 9205164	. Interval]
lnwage Coef time .0066589 union .5420962 part 7703482	Std. Er: 0 .000425 2 .055377 2 .076617	1 15.66 1 9.79 8 -10.05	P> z 	[95% Conf .0058257 .4335592 9205164	. Interval]
lnwage Coef time .0066589 union .5420962 part 7703482	. Std. Er: 9 .000425 2 .055377 2 .0766176 3 .034464	1 15.66 1 9.79 8 -10.05 5 72.14	P> z 0.000 0.000 0.000 0.000	[95% Conf .0058257 .4335592 9205164 2.418639	. Interval] .0074922 .65063336201801 2.553738
lnwage Coef time .0066589 union .5420962 part 7703482 _cons 2.486188	. Std. Er: 9 .000425 2 .055377 2 .0766176 3 .034464	1 15.66 1 9.79 8 -10.05 5 72.14	P> z 0.000 0.000 0.000 0.000	[95% Conf .0058257 .4335592 9205164 2.418639	. Interval] .0074922 .65063336201801 2.553738
lnwage Coef. time .0066589 union .5420962 part 7703482 _cons 2.486188	Std. Er: 0 .000425 2 .055377 2 .0766176 3 .034464	1 15.66 1 9.79 8 -10.05 5 72.14	P> z 0.000 0.000 0.000 0.000 0.000	[95% Conf .0058257 .4335592 9205164 2.418639	. Interval]

RCM: Random Intercept net of Other Covariates and Random Slope

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

$$b_{0i} = b_{00} + \sum_{i} b_{0k}X_{ikt} + u_{0i}$$

$$b_{1i} = b_{10} + u_{1i}$$

$$Var \begin{bmatrix} u_{0i} \\ u_{1i} \end{bmatrix} = \sim N \begin{bmatrix} \sigma_{u_0}^2 & 0 \\ 0 & \sigma_{u_1}^2 \end{bmatrix}$$

erforming EM op erforming gradi		ntimizatio	n•			
computing standa	-	JCIMIZACIO.	ш.			
ixed-effects ML	regression			Number	of obs =	840
roup variable:	_				of groups =	
roup variable.				Numbor	or groups	12
				Obs per	group:	
					min =	
						20.0
					max =	20
				Wald ch	i2(3) =	156.00
og likelihood =	1511.0846				chi2 =	
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval
+						
+			7.66	0.000		
+			7.66 4.72	0.000		
time union part	.0056969 .31924 6651201	.0007439 .0676072 .0943489	7.66 4.72 -7.05	0.000 0.000 0.000	.0042389 .1867322 8500404	.0071549 .4517477 4801997
time union part	.0056969 .31924 6651201	.0007439 .0676072 .0943489	7.66 4.72 -7.05 64.60	0.000 0.000 0.000 0.000		.0071549 .4517477 4801997
time union part	.0056969 .31924 6651201 2.525942	.0007439 .0676072 .0943489 .0390991	64.60	0.000	.0042389 .1867322 8500404 2.449309	.0071549 .4517477 4801997 2.602575
time union part _cons Random-effects	.0056969 .31924 6651201 2.525942	.0007439 .0676072 .0943489 .0390991	64.60	0.000	.0042389 .1867322 8500404 2.449309	.0071549 .4517477 4801997 2.602575
time union part _cons	.0056969 .31924 6651201 2.525942 	.0007439 .0676072 .0943489 .0390991	64.60	0.000 d. Err.	.0042389 .1867322 8500404 2.449309 	.0071549 .4517477 4801997 2.602575
time union part _cons Random-effects	.0056969 .31924 6651201 2.525942 	.0007439 .0676072 .0943489 .0390991	64.60 mate Steller 0148 3.	0.000 d. Err. 66e-06	.0042389 .1867322 8500404 2.449309 [95% Conf.	.0071549 .4517477 4801997 2.602575 Interval]
time union part _cons Random-effects	.0056969 .31924 6651201 2.525942 	.0007439 .0676072 .0943489 .0390991	64.60 mate Steller 0148 3.	0.000 d. Err. 66e-06	.0042389 .1867322 8500404 2.449309 	.0071549 .4517477 4801997 2.602575 Interval]

RCM: Random Intercept net of Other Covariates and Random Slope, Unstructured

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

$$b_{0i} = b_{00} + \sum_{i} b_{0k}X_{ikt} + u_{0i}$$

$$b_{1i} = b_{10} + u_{1i}$$

$$Var\begin{bmatrix} u_{0i} \\ u_{1i} \end{bmatrix} = \sim N \begin{bmatrix} \sigma_{u_0}^2 & \rho(u_0, u_1) \\ \rho(u_0, u_1) & \sigma_{u_1}^2 \end{bmatrix}$$

erforming EM optimization: erforming gradient-based op	timization	ı ·			
omputing standard errors:	CIMIZACIOI	1.			
ixed-effects ML regression			Number o	of obs =	840
roup variable: ind				of groups =	
			Obs per		
					20
					20.0
				max =	20
			Wald chi	i2(3) =	126.99
og likelihood = 1516.0186			Prob > d	chi2 =	0.0000
lnwage Coef.	Std. Err.	z	P> z	[95% Conf	 . Interval]
time .0056362	.0007628	7.39	0.000	.0041412	.0071313
time .0056362 union .2843386	.0007628 .0689311	7.39 4.12	0.000 0.000	.0041412 .1492361	.0071313 .419441
time .0056362	.0007628 .0689311 .0982291	7.39 4.12 -6.07	0.000 0.000 0.000	.0041412 .1492361 7883599	.0071313 .419441 4033088
time .0056362 union .2843386 part 5958343	.0007628 .0689311 .0982291	7.39 4.12 -6.07	0.000 0.000 0.000	.0041412 .1492361 7883599	.0071313 .419441 4033088
time .0056362 union .2843386 part 5958343	.0007628 .0689311 .0982291 .040325	7.39 4.12 -6.07 62.64	0.000 0.000 0.000 0.000	.0041412 .1492361 7883599 2.446994	.0071313 .419441 4033088 2.605066
time .0056362 union .2843386 part 5958343 _cons 2.52603 Random-effects Parameters	.0007628 .0689311 .0982291 .040325	7.39 4.12 -6.07 62.64	0.000 0.000 0.000 0.000	.0041412 .1492361 7883599 2.446994	.0071313 .419441 4033088 2.605066
time .0056362 union .2843386 part 5958343 _cons 2.52603 Random-effects Parameters d: Unstructured var(time)	.0007628 .0689311 .0982291 .040325	7.39 4.12 -6.07 62.64 	0.000 0.000 0.000 0.000 	.0041412 .1492361 7883599 2.446994 	.0071313 .419441 4033088 2.605066 . Interval]
time .0056362 union .2843386 part 5958343 _cons 2.52603 	.0007628 .0689311 .0982291 .040325	7.39 4.12 -6.07 62.64 	0.000 0.000 0.000 0.000 	.0041412 .1492361 7883599 2.446994 	.0071313 .419441 4033088 2.605066 . Interval]
time .0056362 union .2843386 part 5958343 _cons 2.52603 Random-effects Parameters d: Unstructured	.0007628 .0689311 .0982291 .040325	7.39 4.12 -6.07 62.64 	0.000 0.000 0.000 0.000 	.0041412 .1492361 7883599 2.446994 	.0071313 .419441 4033088 2.605066 . Interval]

Random-effects Parameters

RCM: Random Intercept net of Other Covariates and Random Slope net of Other Covariates, Unstructured

$$y_{it} = (\alpha + b_{0i}) + (\beta + b_{1i})T_{it} + \varepsilon_{it}$$

$$b_{0i} = b_{00} + \sum_{i} b_{0k}X_{ikt} + u_{0i}$$

$$b_{1i} = b_{10} + \sum_{i} b_{1k}X_{ikt} + u_{1i}$$

$$Var\begin{bmatrix} u_{0i} \\ u_{1i} \end{bmatrix} = \sim N \begin{bmatrix} \sigma_{u_0}^2 & \rho(u_0, u_1) \\ \rho(u_0, u_1) & \sigma_{u_1}^2 \end{bmatrix}$$

. mixed lnwage time union part c.time##c.union c.time##c.part || ind: time, covariance(unstructured) Performing EM optimization: Performing gradient-based optimization: Computing standard errors: Mixed-effects ML regression Number of obs 840 Group variable: ind Number of groups = Obs per group: min = 20 20.0 avg = max = 20 Wald chi2(5) 248.34 Log likelihood = 1581.4253 Prob > chi2 0.0000 Coef. Std. Err. z P>|z| [95% Conf. Interval] lnwage | .0176998 .0014519 12.19 0.000 .0148543 time | .0205454 6.54 union | .4372819 .0668816 0.000 .3061963 .5683675 part | -.1465969 .1114184 -1.32 0.188 -.364973 .0717793 0 (omitted) time | union | 0 (omitted) c.time#c.union | -.0483779 -11.64 0.000 .0041552 -.056522 -.0402338 0 (omitted) time | 0 (omitted) part | c.time#c.part | -.0451379 .0070325 -6.42 0.000 -.0589214 -.0313545 _cons | 2.455194 .0433314 56.66 0.000 2.370266 2.540122

Std. Err.

Estimate

[95% Conf. Interval]

d: Unstructured var(time)	.0000391	.0000131	.0000202	.0000754
var(_cons)	.0605239	.014725	.0375695	.097503
cov(time,_cons)			0013672	.0000656
var(Residual)	•		.0007173	

RCM vs REM

SOC 910 Advanced Statistics

• If we assume only intercepts differ across clusters/groups/individuals and the difference is random, then,

$$y_{it} = (\alpha + b_{0i}) + \beta T_{it} + \varepsilon_{it}$$

This is REM. Thus, REM is a special case of RCM. If you estimate a simple random-intercept RCM, you will get the identical results with REM with the option of MLE (maximum likelihood estimation).

* ====== * REM						
* ======= . xtreg lnwage	e time union	part, re mle				
Random-effects	s ML regressi	on		Number o	f obs =	84
Group variable				Number o	f groups =	4
Random effects	s u i ~ Gauss	ian		Obs per	group:	
	2 4_1 44422			000 P01	min =	2
					avg =	20.
	\max =					
	LR chi2(3) =					
Log likelihood	d = 1409.98	54		Prob > c	0.000	
lnwage	 Coef.	 Std. Err.	z	P> z	 [95% Conf.	 Interval
time	+ .0066589	0004252	 15 66	0 000	0058255	007492
union	1 .5420962	.0553895	9.79	0.000	. 4335349	.650657
nort	.5420962 7703483	.0771461	-9.99	0.000	9215517	619144
Dart	l 2 486188	.0344729	72.12	0.000	2.418623	2.55375
_cons	2.400100					
_cons / /sigma_u	+ .1881911	.020766			.1515908	. 233628
_cons / /sigma_u /sigma_e	+ .1881911 .0387161	.0009696			.1515908 .0368617	
_cons / /sigma_u /sigma_e	+ .1881911	.0009696				.040663
_cons /sigma_u /sigma_e rho	.1881911 .0387161 .9593946	.0009696 .0088249	 13.07	 	.0368617 .9388778	.04066 .97393
_cons / /sigma_u /sigma_e	.1881911 .0387161 .9593946	.0009696 .0088249	 13.07	P	.0368617 .9388778	.040663 .973930
_cons	+	.0009696 .0088249 ar2(01) = 23	 13.07	 P	.0368617 .9388778	.040663
cons	+	.0009696 .0088249 ar2(01) = 23	 13.07	P	.0368617 .9388778	.040663 .973930
cons	+	.0009696 .0088249 ar2(01) = 23	 13.07	P	.0368617 .9388778	.040663 .973930
cons	+	.0009696 .0088249 ar2(01) = 23	 13.07	P	.0368617 .9388778	.040663 .973930
cons /sigma_u 	+	.0009696 .0088249 ar2(01) = 23 m intercept part ind:	13.07	P	.0368617 .9388778	.040663 .973930
cons	+	.0009696 .0088249 		P	.0368617 .9388778	.040663 .973930
cons /sigma_u 	+	.0009696 .0088249 		P	.0368617 .9388778	.040663 .973930
_cons _sigma_u /sigma_e rho LR test of sig * ====== * RCM with two * ====== . mixed lnwage Performing EM Performing gra	.1881911 .0387161 .9593946 .9593946 .1881911 .9593946 .188191 .188191 .188191 .188191 .188191 .188191 .1881911 .188191 .18819 .18819 	.0009696 .0088249 		P Number o	.0368617 .9388778 rob >= chiba	.040663 .973930

		Obs per						
2								
20.	avg =							
2	max =							
830.5	.2(3) =	Wald chi						
0.000	:hi2 =	Prob > c			354	1409.985	lihood =	Log like
 Interval	[95% Conf.	P> z	z	. Err.	. St	Coef.	wage	ln
.007492	.0058257	0.000	.66	04251	.0	.0066589	time	
.650633	.4335592	0.000	.79	53771	2 .0	.5420962	nion	u
620180	9205164	0.000	.05	66178 -	2 .0	7703482	part	
	2.418639							
 Interval	[95% Conf.	. Err.	Std	Estimat	 ers	Parameter	 effects	 Random
054590	.0229797	07816	.0	.035415	ons)	var(_cor	ntity	ind: Ide
.004002					+			