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Causality 1: Basic Concepts

The Causality Problem in Social Science

• Question: Whether a treatment, T , has an effect on Y .

• δi = Y t
i − Y c

i

where Y t
i refers to the result of Y when treatment t is presented to individual i and Y c

i refers
to the result of Y when treatment t is absent (i.e., control) to the same individual i. We can
define this individual-level causal effect.

• We cannot have both Y t
i and Y c

i . An easiest way to solve this problem is random assignment
of T .

• However for social science, we cannot do this. (E.g., we cannot provide college education and
no-college education to the same individual. Nor can we randomly assign college education
to kids.)

• What we observe, in reality, is either Y t
i when Ti = 1 or Y c

i when Ti = 0. (E.g., we don’t
have the outcome of no-college education for kids who are college educated. We don’t have
the outcome of college education for kids who are not college educated.) In this sense, causal
inference is a problem of missing data.

• To solve this problem, methodologists have developed “counter-factual analyses” to infer
causality from observational data.

• Counter-factual framework: Given that the δi cannot be calculated for any individual and
therefore that Y t

i and Y c
i can be observed only on mutually exclusive subsets of the population,

what can be inferred about the distribution of the δi from an analysis of Yi (= observed
outcome) and Ti (= observed treatment).

• Causal inference, in other words, is equivalent to answering “what if” question.

Average Treatment Effects (ATE) and the Standard (or Näive) Estimator

• ATE of the standard estimator:

δ̄ = Ȳ t − Ȳ c

= E[Y t|T = 1]− E[Y c|T = 0]
(1)

E.g., the effect of college on earnings (= δ̄) is the difference between the average earnings of
the college educated (=Ȳ t) and the average earnings of the no college educated (=Ȳ c) net of
other control variables. This is what we get with regression models.

• What we really estimate with the standard estimator is

δ̄ = Ȳ t
i∈T − Ȳ c

i∈C (2)

where Ȳ t
i∈T refers to the mean of Y for the treated when individual i is assigned to the

treatment and Ȳ c
i∈C refers to the mean of Y for the untreated (i.e., control group) when

individual i is assigned to the control group.
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• In this setting, we do not have information on what will happen if the treated individuals are
untreated (= Ȳ c

i∈T ) and what will happen if the untreated individuals are treated (= Ȳ t
i∈C).

• The real causality (ATE) should be:

δ̄ = π(Ȳ t
i∈T − Ȳ c

i∈T ) + (1− π)(Ȳ t
i∈C − Ȳ c

i∈C) (3)

where π is the probability of assigning into the treatment. Thus, the ATE is the weighted
average between the effect of treatment for the treated and the effect of treatment for the
untreated.

• If we assume π = .5,

δ̄ = .5(Ȳ t
i∈T − Ȳ c

i∈T ) + .5(Ȳ t
i∈C − Ȳ c

i∈C)

= .5(Ȳ t
i∈T − Ȳ c

i∈C) + .5(Ȳ t
i∈C − Ȳ c

i∈T )
(4)

Thus, Ȳ t
i∈T − Ȳ c

i∈C is an unbiased estimate only if Ȳ t
i∈T = Ȳ t

i∈C and Ȳ c
i∈T = Ȳ c

i∈C . That is,
the effect of the treatment should be equal to the treated and the untreated, and the effect
of untreatment should be identical between the treated and the untreated. E.g., the effect of
college education should be identical for those who went to college and who didn’t.

• In order to satisfy these equality conditions, a sufficient condition is that treatment assignment
Ti be uncorrelated with the potential outcome distributions of Y t

i and Y c
i . The principal way

to achieve this uncorrelatedness is through random assignment to the treatment.

• From equation (4), we know 2 sources of bias:

Ȳ t
i∈T − Ȳ c

i∈C =
δ̄

.5
+ (Ȳ c

i∈T − Ȳ t
i∈C)

= δ̄ + (Ȳ c
i∈T − Ȳ t

i∈C)− δ̄

.5

More generally, when we do not assume π = .5,

Ȳ t
i∈T − Ȳ c

i∈C = δ̄ + (Ȳ c
i∈T − Ȳ t

i∈C) + (1− π)(δ̄i∈T − δ̄i∈C) (5)

Thus, the standard estimator is the true effect of the treatment, δ̄ plus two biases: first,
(Ȳ c

i∈T − Ȳ t
i∈C) and second, (1− π)(δ̄i∈T − δ̄i∈C).

1. The first source of bias, (Ȳ c
i∈T − Ȳ t

i∈C) is equal to the difference between the treatment
and control groups in the absence of treatment. E.g., difference in the labor market
outcome for BA+ and non-BA if none are college educated. BA+ would earn more even
if they don’t have college education because they are smarter at the first place and more
ambitious.
−→ Selection effect

2. The 2nd source of bias, (1 − π)(δ̄i∈T − δ̄i∈C), is the difference in the treatment effect
for those in the treatment and control groups. E.g., the effect of college education will
differ between those who are actually college educated and those who are not college
educated. Recall negative and positive selection debate (Brand and Xie 2010 ASR).
−→ Treatment heterogeneity
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• An example: effect of college education

1. Real effect: College education makes people more productive and smarter.

2. Selection: Smarter and more productive people tend to go to college more likely.

3. Treatment heterogeneity: Productivity may have increased more for those attended a
college than those those did not attend a college.

Average Treatment Effects for the treated (ATT)

• ATE is not necessarily of theoretical interest. Sometimes the average treatment effects for
the treated (ATT = Ȳ t

i∈T − Ȳ c
i∈T ) only can be of researchers’ interest.

• For example, the effect of a job training for those who didn’t go to college would be negative
if we include college goers in the control group. But the effect of job-training for college goers
is not our interest.

• ATU: Average treatment effects for the untreated.

Key Assumption of the Causality

• SUTVA assumption: a change in treatment status of any individual does not affect the
potential outcomes of other individuals. This is known as “the stable unit treatment value
assumption (SUTVA).”

– E.g., the supply of more college educated workers will not change the earnings for the
no-college educated workers.

• Conditional Independence (CIA), Strict Ignorability, Exogeneity, or Selection on observables:
observed covariatesX comprises a sufficient set of joint causes of the treatment on the outcome
so that, conditional on covariates, variation in the treatment is as good as randomly assigned.
That is, the treatment is unrelated to either unobserved heterogeneity (omitted variable bias)
or agents’ purposive choice of treatment (self selection or endogeneity).

– Note that CIA is not a primarily statistical, but rather a fundamental theoretical state-
ment.

Several Causality Models

• Natural Experiments

• Fixed Effects Model

• Difference-in-difference

• Inverse Probability Treatment Weight (IPTW)
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• Instrumental Variable (IV)

• Propensity Score Matching


