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Abstract

The Kitagawa-Oaxaca-Blinder decomposition approach has been widely used
to attribute group-level differences in an outcome to differences in endowment,
coefficients, and their interactions. The method has been implemented for Stata
in the popular oaxaca program for cross-sectional analyses. In recent decades,
however, research questions have been more often focused on the decomposition of
group-based differences in change over time, e.g. diverging income trajectories, as
well as decomposition of change in differences between groups, e.g. change in the
gender pay gap over time. We review five existing methods for the decomposition of
changes in group means and contribute an extension which takes an interventionist
perspective suitable for applications with a clear before-after comparison.
These decompositions of levels and changes over time can be implemented using
the program xtoaxaca, which works as a postestimation command for different
regression commands in Stata. It is built to maximize flexibility in modeling and
implements all decomposition techniques presented in this paper.
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1 Introduction

The decomposition of group differences in means (Kitagawa, 1955; Oaxaca, 1973; Blin-
der, 1973) is a popular tool when researchers seek to attribute such differences to dif-
ferences in the groups’ characteristics and an unexplained part. As such, scholars have
applied such decompositions to a variety of topics such as gender income inequality
(Blau and Kahn, 2017), happiness (Arrosa and Gandelman, 2016), or obesity (Taber
et al., 2016). This approach has also seen numerous extensions over the last decades to
suit researchers’ needs, such as its application to distributional parameters other than
the mean (Freeman, 1980, 1984), to nonlinear models (Fairlie, 2005; Bauer and Sinning,
2008), to quantile regression (Machado and Mata, 2005), selection models (Neuman and
Oaxaca, 2003), and other topics (for an overview, see Fortin et al. 2011). In large parts
of the applied literature these kinds of decompositions are known as Oaxaca-Blinder de-
compositions, after two of the three scholars who pioneered these approaches (Oaxaca,
1973; Blinder, 1973). We refer to this way of decomposing group mean differences as
the Kitagawa-Oaxaca-Blinder (KOB) approach to reference the earliest and often over-
looked contribution to this literature as well (Kitagawa, 1955). As researchers became
increasingly interested in research questions involving developments over time, further
extensions were developed to decompose the changes in mean group differences between
two points in time (Smith and Welch, 1989; Wellington, 1993; Makepeace et al., 1999;
DeLeire, 2000; Kim, 2010). These decomposition techniques are based on principles
similar to those in the original KOB decomposition and have been primarily used in
repeated cross-sectional studies on income gaps. None of those approaches mentioned
above have been coherently implemented in Stata. We therefore propose the xtoaxaca

command. It implements extensions of the original KOB decomposition that focus on
the decomposition of changes between groups across time and makes decompositions
available for pooled cross-section and panel data.

The command enables a user-friendly implementation of five existing decomposition
methods for change (Smith and Welch, 1989; Wellington, 1993; Makepeace et al., 1999;
DeLeire, 2000; Kim, 2010) and retains the possibility of applying it to panel instead
of only repeated cross-sectional regression models. It provides a generalization of the
existing oaxaca command (Jann, 2008) to longitudinal and panel data. It also includes
a modified version of an existing decomposition approach (Wellington, 1993), which
is suitable for easy interpretation of the results under an interventionist perspective.
This approach is aimed at before-after comparisons such as settings of interventions,
policy changes, or (natural) experiments with a post-treatment follow-up. We believe
that, in many instances, this perspective is applicable to numerous applied research
settings in social sciences and has a more natural interpretation than the existing five
decompositions of group differences in change over time.

The purpose of this paper is to introduce both the xtoaxaca command for Stata
and the new decomposition approach for change. In the next section, we introduce the
concepts of longitudinal decompositions of levels and change of mean group differences
over time. Both decompositions are implemented in the xtoaxaca command. We
then elaborate on cross-sectional decomposition of levels – recapitulating the original
KOB decomposition – and apply these principles to the decomposition of levels over

2



time using longitudinal and panel data. The fourth section presents a discussion of
different approaches to the decomposition of change. Thereafter, in the fifth section,
we argue that an interventionist perspective on the decomposition of change has a
crucial advantage in terms of interpretation for applied research. We then describe in
the sixth section the syntax and options of the new xtoaxaca command. We present
three empirical examples in the seventh section. The eigth section summarizes the
main limitations of the xtoaxaca command. The last section concludes and provides
an outlook for future research.

2 Decomposition of Levels and Change

Generally speaking, there are two ways in which we can use mean decomposition tech-
niques with longitudinal data.

The first way examines the contribution of past changes or events to levels of out-
comes differences between two groups A and B at a single time tu. The second way
of exploiting longitudinal data is the decomposition of group differences in change in
an outcome between two groups A and B between times s and t. We address both
approaches in turn, but highlight the importance of the latter.

Using longitudinal data to determine the contribution of past changes, a typical
research question is

1. How much of the difference in an outcome Y between groups A and B at time t
is due to the differences in the incidence of a past event X, its different effects, or
its different cumulative effects over the last n years?

This type of question utilizes longitudinal data by taking individuals’ past expe-
riences into account. For instance, we may ask to what extent differences in past
unemployment spells and their cumulative impact affect the gender wage gap at time
t. In Figure 1, this would translate into the decomposition of the outcome difference
at tu, ∆Yt. It would take the different incidences and effects of events at r and u into
account to explain the level difference ∆Yt. Analytically, this type of question is still
cross-sectional in nature and we can examine it using the traditional KOB decomposi-
tion3.
In the following, we denote the repeated decomposition of group differences over time
as the longitudinal decomposition of levels over time. Decomposing levels is a dis-
tinct approach from the second way of using longitudinal data for decomposition, the
decomposition of change.

If we seek to decompose the change in mean group differences over time, we compare
the mean group differences between groups A and B between two points in time, s and
t, and ask what factors narrowed or widened the outcome difference over time. For
example, the wage gap between men and women may have decreased over the last ten
years. A researcher might ask whether this occurred due to compositional changes
(differential changes in endowments of the groups) or changes in the contribution of

3Possibly taking into account panel attrition (Oaxaca and Choe, 2016).
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Figure 1: Decomposition of changes over time.
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coefficients of the two groups. Thus, the second kind of longitudinal question can be
expressed as follows:

2. How much of the change in differences in an outcome Y between groups A and
B and between times t and s is due to changes in the groups’ composition or the
effects of the explanatory variables?

In Figure 1, this amounts to decomposing the change in group differences between
time s and t, ∆Y B −∆Y A.

As has been shown (Smith and Welch, 1989; Wellington, 1993; Makepeace et al.,
1999; DeLeire, 2000; Kim, 2010), this type of question can be answered with repeated
cross-sectional data. In this paper, we demonstrate that these existing approaches to the
decomposition of change can be easily generalized to the use of panel regression models
as well. We argue, however, that the existing approaches are not always easy to interpret
when asking a set of research questions that falls under what we call interventionist
perspective. Therefore, we argue that they can be usefully complemented by a new
approach to the decomposition of change, which we lay out in detail in section 5.

3 Decomposition of levels

3.1 The KOB decomposition for cross-sectional data

Before we review the existing approaches to the decomposition of change, it is useful
to recapitulate what the original KOB decomposition does using cross-sectional data
(Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973). We will also introduce the notation we
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will use throughout the paper. We start with a basic linear regression model for an
outcome Y and two groups A and B:

Y lt = X l
t
′βlt + εlt, E(εl) = 0, COV (X, ε) = 0 l ∈ [A,B] (1)

where X represents the matrix of covariates, including the unity vector, while β contains
the k− 1 coefficients and the constant, t denotes the time, and ε is the error-term. The
basic KOB decomposition applies to data with one point time and divides the mean
outcome difference between the two groups into a part that is explained by differences
in the groups’ characteristics and an unexplained part (twofold approach). Given that
the decompositions of change we introduce in section 4 are often based on the assump-
tion that there are groups differences in the coefficients (threefold decomposition), we
illustrate our notation on this approach. Given the outcome difference

∆Yt = E(Y At )− E(Y Bt )

= E(XA
t )′βAt − E(XB

t )′βBt (2)

and given that E(X l
tβ
l
t+ε

l
t) = E(X l

tβ
l
t), the outcome difference can be decomposed into

∆Yt = Et + Ct + It

Et =
[
E(XA

t )− E(XB
t )
]′
βBt

Ct = E(XB
t )′(βAt − βBt )

It =
[
E(XA

t )− E(XB
t )
]′

(βAt − βBt ) (3)

Et is defined as the part of the difference that is due to differences in the groups’
characteristics at time t (endowments effect). Ct is the part of the difference that is due
to differences in the coefficients at time t. It, finally, is the part of the difference at time
t that is due to the interaction of the groups’ different characteristics and coefficients.

The presented decomposition in equation (10) is a threefold decomposition from the
viewpoint of group B, meaning that Et is weighted by B’s coefficients and that Ct is
weighted by B’s characteristics. While this suffices to represent the basic principle of
the KOB decomposition, other decompositions, such as a twofold decomposition or a
decomposition from the viewpoint of group A, are possible (cp. Jann, 2008; Fortin et al.,
2011).

From the viewpoint of group A, we would weight the differences in characteristics
and coefficients with the characteristics and coefficients of group A instead of group B:

∆Yt =
[
E(XA

t )− E(XB
t )
]′
βAt + E(XA

t )′
(
βAt − βBt

)
+
[
E(XB

t )− E(XA
t )
]′ (

βBt − βAt
)

(4)

For the twofold decomposition, which is the one originally devised by Oaxaca and Blin-
der, the outcome difference (with group A as the reference) is decomposed by

∆Yt =
[
E(XB

t )− E(XA
t )
]′
βAt + E(XB

t )′(βBt − βAt ) (5)

This is also implemented in xtoaxaca, but not discussed in detail in this article. Normal-
ization of explanatory variables (Yun, 2005) has also been implemented as is explained
in the next sub-section (3.2).
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3.2 Normalization of categorical variables

As has been noted in the literature (Jann, 2008; Kim, 2010; Yun, 2005), there is an
identification problem when categorical variables are used for decomposition. A widely
used solution is to normalize the coefficients of categorical variables by subtracting
the variable-specific mean of the coefficient from each category of the variable-specific
coefficients and adding all subtracted means to the intercept for decomposition purposes.
This yields a new set of coefficients for the decomposition defined as:

β̃lj = βlj −
∑k
i=1 β

l
k

k
(6)

In this notation, j indicates the jth categorical variable and k the kth category
within the jth categorical variable, with β1 constrained to zero for identification in the
original model. The intercept is then defined as:

β̃l0 = β0 +

j∑
i=1

∑k
i=1 β

l
k

k
(7)

As can be seen, the basic principle of the original KOB decomposition is to get
counterfactual estimates for the outcome for, e.g., group B assuming it had the same
endowments or coefficients as group A. This reasoning is retained in the decomposition
of levels and change over time as well.

3.3 Longitudinal data using non-panel regression models

The use of the KOB decomposition with non-panel regression models is unproblematic
with longitudinal data as long as time is measured discretely. Discretely in this context
means that observations are categorized together to have been observed at the same,
undifferentiated time point, for example in waves of a cohort of panel study. In this case,
the analysis is identical to a repeated cross-sectional approach. However, the assumption
can also be that the time variable is (quasi-)continuous. In this case, we have to define
a bandwidth (b) around the time points to allow for an estimation of the endowment
part. The wider the bandwidth is, the more reliable the estimate is, because more data
points fall into the bandwidth around the time point (and the smaller the standard
errors become). Broadening the bandwidth comes at the price of losing sensitivity to
time-dependent changes in the endowment. From a nonparametric modeling this is
similar to the trade-off which has to be made between bias and variance (Härdle et al.,
2012, 28). We estimate:

E(X l
t−b;t+b) (8)

In the case of the continuous-time variable, the decomposition components become
a function of the chosen bandwidth b.
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This raises the question of whether the coefficients, like the endowment, can also become
dependent on the chosen bandwidth. This has to be decided in line with the choice of the
functional form of the time variable in the regression models used for the decomposition.
Even when a bandwidth of some kind is used for the endowments, a parametric form can
be chosen for the coefficients over time. However, the time variable can be constructed to
reflect the bandwidth around pre-specified points in time. In such a case, the coefficients
can be estimated nonparametrically for each of these time intervals separately, and the
decomposition can be done for each of these time intervals. Under these circumstances
coefficients and endowments would be treated in an analogous fashion.
For simplicity’s sake, we leave out the bandwidth in the index for the remainder of
the paper, but note that it is theoretically necessary and practically possible to set the
bandwidth in cases in which time is assumed to be continuous.

3.4 Longitudinal data using panel regression models

Using panel data, we can also estimate β from a panel regression model. Since panel
regressions model time-constant individual error terms, a decomposition using panel
regression models must take empirical group differences in these time-constant, unob-
served variables into account. Thereby, the time constant individual error terms ul

become part of the decomposition of group-level differences.

Y lt = X l
t
′βlt + ul + εlt, E(εlt) = 0, COV (Xt, εt) = 0 l ∈ [A,B] (9)

Taking the time-constant error-terms into account adds the differences in the ex-
pectation of ul as a fourth component U to the decomposition. This component is not
time-dependent. It only comprises differences between groups in the time-constant error
terms.4

∆Yt = Et + Ct + It + U

Et =
[
E(XA

t )− E(XB
t )
]′
βBt

Ct = E(XB
t )′(βAt − βBt )

It =
[
E(XA

t )− E(XB
t )
]′

(βAt − βBt )

U =
[
E(uA)− E(uB)

]
(10)

Accordingly, a decomposition using panel regression models attributes parts of the
differences between groups to unobserved factors that do not change within the period
of observation.

4Note that in applied research an unbalanced panel might mean that taking the expectation of the
time-constant error term at different time points t can lead to time varying results if the drop-out is
related to the time-constant error terms.
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3.5 Model assumptions

3.5.1 Selection and causal identification

It is important to note that any results produced by decompositions of levels or change
rely on the assumptions made in the original regression models. This pertains especially
to the interpretation of the results in a causal manner. Following a counterfactual in-
terpretations of causality in social sciences (Morgan and Winship, 2014), the estimators
for the explanatory variables would need to be unbiased. Only then could the results
of any of the decomposition approaches presented here (including the original KOB
decomposition) be given interpretations like “how much would the gap between group
A and group B be reduced, if group A had the same endowments as group B”. Panel
regression models offer some advantages when it comes to arguing that the assumptions
for causal interpretation are fulfilled, but still rest on certain assumptions which are
often not realistic in applied research (Firebaugh et al., 2013).

For example, from a more technical perspectives it should be noted that in a stan-
dard random-effects model (which includes the grouping variable l as a covariate), the
assumption is that cov(l, u) = 0. This implies that E

[
E(uA)− E(uB)

]
= 0. If our

model conforms to this assumption, we should, therefore, expect that the time-constant
error terms cannot contribute to the explanation of differences in group levels of the out-
come. If we see strong deviations in an empirical estimation of E

[
E(uA)− E(uB)

]
= 0,

this might indicate a misspecified model leading to biased coefficient estimates, which
in turn could lead to a biased decomposition.

3.5.2 Panel drop-out

With longitudinal data, panel drop-out is a serious issue that may affect the estimation
of coefficients (Oaxaca and Choe, 2016) as well as the estimation of the time-specific
endowment component. If the results are to be interpreted causally, endogeneity prob-
lems resulting from panel drop-out have to be solved when designing the panel regression
models before the decomposition is applied.

It is possible for drop-out rates to differ between the groups under study. This can
also affect the estimation of the endowments in equation 8. To avoid biased endowments
estimators, weights that account for the effects of differential panel-drop out must be
constructed and applied in the estimation of the endowments. How these are constructed
is beyond the scope of this article; however, we recommend standard procedures from the
literature on survey research (Kalton and Flores-Cervantes, 2003; Deming and Stephan,
1940; Kim and Kim, 2007) which can be implemented in Stata using survwgt (Winter,
2018).

3.5.3 Functional form of the time variable

In the modeling process, it will be possible to either specify time nonparametrically, esti-
mating an interaction of each time point with the group variable and each decomposition
variable, or assume a certain functional form like linear growth. The decomposition will
rely on these assumptions made in the modeling process. If the functional form is chosen
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incorrectly, this will also affect the decomposition and the results will consequently be
biased. This is not only important for the overall growth of the dependent variable, but
also for the change in the effect of the decomposition variables over time. A nonpara-
metric approach is less statistically efficient, but has much weaker assumptions than
any parametric function and might therefore be preferred if researchers are uncertain
in this regard.

3.6 Decomposition in a multi-level framework

Since all panel models can be understood as a special case of multi-level models (with
time points nested within units), we believe that xtoaxaca can also be used to decom-
pose levels and differences5 between clusters or higher-level units. For this purpose,
the time variable needs to reflect the cluster variable (e.g. countries) and should be used
in categorical interaction with the desired variables in the model. Differences between
units in a mulit-level framework and differences between time points can both be seen
as a form of difference-in-differences decomposition.

The interpretation of the decomposition of levels over different clusters does not
deviate from repeated cross-sectional Kitagawa-Oaxaca-Blinder decompositions, and for
this purpose using xtoaxaca would not contribute much extra benefit over using oaxaca.
However, decomposition of difference in differences between groups over clusters
or higher-level units might be of interest (Blau and Kahn, 1992). The interpretation
then refers to whether differences between clusters or higher-level units in the group
differences in the outcome can be attributed to cluster differences in the group differences
in endowments, coefficients, or their interactions.

4 Decomposition of change

Regardless of whether we have repeated cross-sectional or panel data, given two groups
A and B for which we have data for at least two points in time, t and s with t > s, the
change in the outcome difference between the two groups and between the two points
in time is given by

∆Y = ∆Yt −∆Ys (11)

Alternatively, changes in outcome differences between two groups and two points in
time can be expressed as the difference of group differences over time

∆Y = ∆Yt −∆Ys

= (Y At − Y Bt )− (Y As − Y Bs )

= Y At − Y Bt − Y As + Y Bs

= Y At − Y As − Y Bt + Y Bs

= Y At − Y As − (Y Bt − Y Bs )

= ∆Y A −∆Y B (12)

5The multilevel analogue to change
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Essentially, changes over time can therefore be expressed as the difference between two
KOB-decompositions at different time points.

Several approaches for the decomposition of change in group differences over time
exist. We cover the five most prominent examples.6 These decompositions of change
have been applied to both points using repeated cross-sectional data. The generalization
of the decomposition of levels to continuous-time and panel data introduced in the
previous section applies in the same way to the decomposition of change as it does to
the decomposition of levels.

4.1 Simple subtraction method (SSM)

The simplest decomposition of change is a simple subtraction of the decomposition
components of the original KOB-decomposition at time s from the components at time
t and is defined in our notation as SSM:

∆Y = ∆Yt −∆Ys

= Et + Ct + It − (Es + Cs + Is)

= (Et − Es) + (Ct − Cs) + (It − Is)

=
[
E(XA

t )− E(XB
t )
]′
βBt︸ ︷︷ ︸

Et

−
[
E(XA

s )− E(XB
s )
]′
βBs︸ ︷︷ ︸

Es

+ E(XB
t )′

(
βAt − βBt

)︸ ︷︷ ︸
Ct

−E(XB
s )′

(
βAs − βBs

)︸ ︷︷ ︸
Cs

+
[
E(XA

t )− E(XB
t )
]′ (

βAt − βBt
)︸ ︷︷ ︸

It

−
[
E(XA

s )− E(XB
s )
]′ (

βAs − βBs
)︸ ︷︷ ︸

Is

This method is straightforward to calculate, applied for example in DeLeire (2000).
The endowment part can be interpreted as the part in the change in the gap that is
due to changes in the endowments given changes in the evaluation (coefficient) in the
reference group over time. The coefficient part is the part in the change in the gap
that is due to changes in the coefficients given changes in the evaluation (endowment)
in the reference group over time. The interaction part is difference in the interactions
of group differences in coefficients and endowments, and similarly to the original KOB,
this component is difficult to interpret and might often be treated as the substantively
unexplained part.

The approach has also attracted criticism because it does not estimate the unique
contribution of coefficient changes and changes in the variable distributions over time
(Kim, 2010). As Kim (2010) shows, the coefficient differences at each time point are
weighted by the mean distribution of the endowments at their respective time and, as
the endowments likely change over time, the coefficient effect captures these changes.

6There are 2 ∗ 2 ∗ 2 = 8 (endowments and coefficients per two groups per two time points) estimates
which make up equation 17. Decompositions can take any number of possible differences and products
as part of the decomposition and combine them to form a new kind of decomposition.
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Similarly, the endowment effect contains interactions between the coefficient and endow-
ment changes. This kind of criticism applies in a different way for all the decompositions
presented here, except for the one by Kim (2010).

4.2 Smith and Welch (1989) (SW)

Smith and Welch (1989) propose a fourfold decomposition of change which is defined in
our notation as SW (Smith and Welch, 1989, p. 529):

i =
{ [

(E(XA
t )− E(XB

t )
]
−
[
E(XA

s )− E(XB
s )
] }′

βBs

ii =
[
E(XA

t )− E(XA
s )
]′ (

βAs − βBs
)

iii =
[
E(XA

t )− E(XB
t )
]′ (

βBt − βBs
)

iv = E(XA
t )′
[(
βAt − βBt

)
−
(
βAs − βBs

)]
The components can be given the following interpretation:7

(i) Main Effect : The component estimates the predicted change in the outcome be-
tween the two groups that can be attributed to the two groups are changing in
the endowments (valued at base time s) between time t and s.

(ii) Group interaction: The second component describes the part of change in the
endowment of group that is valued differently at time s. Therefore, a secular rise
in endowments gives a higher benefit to the group with the higher return to this
endowment at time s.

(iii) Time interaction: This component takes the endowment differences at the second
time point and attributes change to the change in the coefficient of group B. This
would mean that higher returns to an endowment benefit the group whith higher
endowments at time point t.

(iv) Group-time interaction: The last component attributes change to a change in the
differences in the coefficients (returns to endowments) given the initial level of
group A. If group A were the disadvantaged group, reduction in the differences to
the return to their endowments would close the overall gap between the groups.

4.3 Wellington (1993) (WL)

Wellington (1993) proposes a simple twofold decomposition of change in differences in
labor market returns. Her decomposition is defined in our notation as WL (Wellington,
1993, p. 393):

WL1 =
[
(E(XA

t )− E(XA
s )
]′
βAt −

[
E(XB

t )− E(XB
s )
]′
βBt

WL2 =
(
βAt − βAs

)
E(XA

s )′ −
(
βBt − βBs

)
E(XB

s )′

7See (Smith and Welch, 1989, p. 529-530) for their interpretation of the change in the race gap in
wages.
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Wellington (1993, p. 393-394) gives the following description of the two components:

(WL1) The portion of the change in the gap which can be accounted for by changes in
the means if the returns to the independent variables were constant at t (not at
baseline s).

(WL2) The portion of the change in the gap that can be explained by changes in the
coefficients (including the constant term) over the period, evaluated at the groups’
baseline (s) means.

This approach is the one that is closest to our own addition (see next sub-section)
to the set of possible decomposition approaches, but there is a slight but significant
difference, as we discuss in section 5.

4.4 A threefold extension of WL (Interventionist)

There is another useful way in which the change in gaps can be decomposed. This is an
extension of the WL decomposition which takes the form of a threefold decomposition.

∆Y A −∆Y B = ∆Y = ∆E + ∆I︸ ︷︷ ︸
WL (1)

+ ∆C︸︷︷︸
WL (2)

(13)

The three components are named in analogue to the original KOB decomposition.
To obtain the endowments effect, we allow only the groups’ composition to vary over
time and hold the coefficients constant at their initial group-specific levels at time s.

∆E = E(XA
t )′βAs − E(XA

s )′βAs − E(XB
t )′βBs + E(XB

s )′βBs

=
[
E(XA

t )− E(XA
s )
]′
βAs −

[
E(XB

t )− E(XB
s )
]′
βBs (14)

As can be seen in equation (14), we obtain the endowments component by subtract-
ing the groups’ compositional changes over time weighted by their initial coefficients.
The endowment component then answers the question: Given the initial differences in
coefficients, how much does the gap between groups change due to the changes in the
endowments between the both points (if the coefficients do not change)?

Similar to the endowments effect, the component attributable to a change in coeffi-
cients is obtained by fixing the groups’ endowments so that E(X l

t) = E(X l
s)

∆C = E(XA
s )′βAt − E(XA

s )′βAs − E(XB
s )′βBt + E(XB

s )′βBs

= E(XA
s )′
(
βAt − βAs

)
− E(XB

s )′
(
βBt − βBs

)
(15)

which denotes the change of the difference due to a change in coefficients (including the
constant) over time between the groups given the groups’ initial differences in endow-
ments at s. The coefficient component answers the question: Given the initial differences
in endowments, how much does the gap between groups change due to changes in the
coefficients (if the endowments do not change)?
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The interaction between the change in endowments and coefficients is the last com-
ponent of the decomposition:

∆I =
[
E(XA

t )− E(XA
s )
]′ (

βAt − βAs
)
−
[
E(XB

t )− E(XB
s )
]′ (

βBt − βBs
)

Similar to the original KOB-decomposition, it is difficult to give this component a
straightforward interpretation on its own. Additionally, it should be noted that the
sub-component of ∆C which is attributable to a change in the intercept is usually also
a kind of residual, unexplained by the (change in) X variables in the model.

We can show that our suggested approach is a direct extension of Wellington (1993).
First, our ∆C component is exactly the same as WL (2) of the Wellington decomposi-
tion.

WL(2) =
(
βAt − βAs

)
E(XA

s )′ −
(
βBt − βBs

)
E(XB

s )′

= E(XA
s )′
(
βAt − βAs

)
− E(XB

s )′
(
βBt − βBs

)
= ∆C

In addition, if we add up the endowment and interaction term of the interventionist
decomposition, we get the first part of the Wellington decomposition.

∆C + ∆I =
[
E(XA

t )− E(XA
s )
]′
βAs −

[
E(XB

t )− E(XB
s )
]′
βBs +[

E(XA
t )− E(XA

s )
]′ (

βAt − βAs
)
−
[
E(XB

t )− E(XB
s )
]′ (

βBt − βBs
)

=
[
(E(XA

t )− E(XA
s )
]′
βAt −

[
E(XB

t − E(XB
s )
]′
βBt

= WL(1)

4.5 Makepeace et al. (1999) (MPJD)

Another well-known approach aims at partially mirroring the twofold cross-sectional
KOB-decomposition into explained and unexplained in the decomposition of change.
The authors further divide the explained and unexplained components into a component
related to change in endowments (pure) and one aspect related to change in coefficients
(price) (Makepeace et al., 1999, p. 539). Their decomposition is defined in our notation
as MPJD:

∆Epure =
{ [
E(XA

t )− E(XA
s )
]
−
[
E(XB

t )− E(XB
s )
] }′

βAt

∆Eprice =
[
E(XA

s )− E(XB
s )
]′ (

βAt − βAs
)

∆Upure = E(XB
t )′
[ (
βAt − βAs

)
−
(
βBt − βBs

) ]
∆Uprice =

[
E(XB

t )− E(XB
s )
]′ (

βAs − βBs
)

(16)
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4.6 Kim (2010) (KIM)

While many decomposition approaches were developed with particular research ques-
tions in mind, Kim (2010) develops the most analytical approach. It yields five com-
ponents of which two can be attributed purely to the change in endowments and coef-
ficients. He argues that all methods discussed so far in this paper confuse or at least
conflate the pure change in endowment and the pure change in the coefficients with
interactions of such changes with initial (or current) level differences in coefficients and
endowments. We agree with the analysis, but argue in section 5 that for the sake of
interpretability this might be a desirable property of a decomposition.

His decomposition (Kim, 2010, p. 629) has five parts and is defined in our notation
as:

D1 =
[
(βA0,t − βA0,s)− (βB0,t − βB0,s)

]
+
[
(β̄∗At − β̄∗As )− (β̄∗Bt − β̄∗Bs )

]
D2 =

[
E(X∗At ) + E(X∗As ) + E(X∗Bt ) + E(X∗Bs )

4

]′ [ (
β̃At − β̃As

)
−
(
β̃Bt − β̃Bs

) ]
D3 =

{[
E(X∗At )− E(X∗As )

]
+
[
E(X∗Bt )− E(X∗Bs )

]
2

}′ 
(
β̃At + β̃As

)
2

−

(
β̃Bt + β̃Bs

)
2


D4 =

{ [
E(X∗At )− E(X∗As )

]
−
[
E(X∗Bt )− E(X∗Bs )

] }′ [ β̃At + β̃As + β̃Bt + β̃Bs
4

]

D5 =

{[
E(X∗At ) + E(X∗As )

]
2

−
[
E(X∗Bt ) + E(X∗Bs )

]
2

}′ 
(
β̃At − β̃As

)
+
(
β̃Bt − β̃Bs

)
2


with β∗l denoting the coefficient vector in group l ∈ {A,B} without the intercept and

β̃lt denoting the demeaned coefficient at time t for group l ∈ {A,B}.
Following Kim (2010), we can give the following descriptions of the five components:

D1 Intercept Effect : This is purely the difference in differences between group and
overall intercepts.

D2 Pure Coefficient Effect : This component measures how much the gap between
groups changes due to changes in the coefficients if there were no differences in
the endowments at all, neither between groups nor over time.

D3 Coefficient Interaction Effect : This component measures how much the gap be-
tween groups changes due to the average change in endowment combined with the
difference in the averaged coefficient. It is supposed to capture the aspect of initial
level differences in coefficients, which affect the change in the gap in interaction
with changes in endowments.

D4 Pure Endowment Effect : This component is the analog to D2 for endowments.
It measures how much the gap between groups changes due to changes in the
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endowments if there were no differences in the coefficients at all, neither between
groups nor over time.

D5 Endowment Interaction Effect : This component is the analog to D3, but reverses
the role of endowment and coefficients. It measures how much the gap between
groups changes due to the average change in coefficients combined with the differ-
ence in the averaged endowments. It is supposed to capture the aspect of initial
level differences in endowments, which affect the gap in interaction with changes
in coefficients.

In order to better understand how the KIM decomposition decomposes group dif-
ferences over time, we need to take a closer look at the intercepts in D1. So far,
decompositions have used the standard matrix notation of multiple regression. This
means that the intercept (or constant) βl0 is part of the coefficient vector:

βl = [βl0, β
l
1, ..., β

l
k] = [βl0, β

∗l]

with k being the number of decomposition variables used in the model. Accordingly,
the means matrices so far have contained a unity vector which is multiplied with the
intercept:

E(X l) = [1, E(xl1), ..., E(xlk)] = [1, E(X∗l)]

Kim (2010) uses a different approach by explicitly distinguishing between intercepts
and covariates. Therefore, the notation for the coefficients uses β̃∗l to represent the
coefficient vector without the intercept and X l∗ as the means vector without the 1.
Additionally, the decomposition uses the normalization proposed by Yun (2005):

β̃l = [β̃l0, β̃
l
1, ..., β̃

l
k] = [βl0 + β̄∗l, β∗l − β̄∗l]

with β̃0
l

being the intercept for the demeaned coefficients (see equation 7), β̃l1, . . . , β̃
l
k

being the demeaned coefficient vectors, and β̄∗l being a vector of variable specific means
of the coefficients (see section 3.2).

With β̃∗l being the demeaned coefficient vector without the intercept, it follows that:

E(X∗l)′β̃∗l + βl0 + β̄∗l = [1, E(X∗l)]′[βl0, β̃
∗l + β̄∗l]

= E(X l)′βl

4.7 Panel models and time-constant error terms

As mentioned in section 3.4, decompositions can also attribute parts of group differences
in levels of the outcome to factors that are time constant within the period of obser-
vation. The same can be done for change over time (∆U). However, this only makes
sense if we have an unbalanced panel. If the panel is balanced, the expectations of the
time-constant error terms cannot change over time and cannot contribute anything to
the decomposition of change between groups.
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If we see substantial contributions of the time-constant error terms, the data suffers
from group-specific panel attrition, which contributes to a change in the group differ-
ences in the outcome. In this case, we can add a component ∆U to all of the previous
five decompositions as well as to the interventionist decomposition method introduced
in the next section.

∆U =
[
E(uAt )− E(uAs )

]
−
[
E(uBt )− E(uBs )

]
4.8 The relationship between the different types of decomposi-

tions

Since all decomposition approaches decompose the same differences in change over time,
each decomposition can be expanded and transformed into any other of the existing
decompositions. Nevertheless, there are some direct relationships which are worth men-
tioning and which are also depicted in figure 4.8.8.

The six decomposition methods can be divided into a heuristic based on a combina-
tion of two characteristics. The first one is simply the number of components which is
used. Here we see between two and five components. The second characteristic divides
the methods into those which conduct decompositions group-wise across time and those
which conduct decompositions time-wise across groups. Time-wise across groups means
that the differences between groups at one time point are subtracted from another the
differences between groups from another time point. In contrast, group-wise across time
means that the differences between time-points within one group are subtracted from
the differences between time-points within the other group.

WL, KIM, and the interventionist approach fall clearly into the group-wise over time
category, while SSM is a time-wise over group approach. For MPJD and SW not all
components of their decomposition follow this logic. For MPJD the pure components
are group-wise over time and for SW the components (i) and (iv) are time-wise over
groups.

In section 4.4, we have already shown that WL can be further divided to yield a
threefold decomposition which we label interventionist and which we argue has a certain
desirable property in contrast to all other approaches, which we elaborate on in section
5.

The simple subtraction method does time-wise subtractions across groups of the
components of endowments, coefficients, and interactions. If we were to exchange time
points with groups we would end up with a group-wise subtraction across time. This
is exactly what is done in the interventionist perspective. So if we were to substitute
t = A and s = A, the equations would be:

8We are very grateful to an anonymous reviewer for pointing out some of these relationships.
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∆E = EA − EB =
[
E(Xt

A)− E(Xs
A)
]′
βsA −

[
E(Xt

B)− E(Xs
B)
]′
βsA

∆C = CA − CB = E(Xs
A)′
(
βtA − βsA

)
− E(Xs

B)′
(
βtB − βsB

)
∆I = IA − IB =

[
E(Xt

A)− E(Xs
A)
]′ (

βtA − βsA
)
−
[
E(Xt

B)− E(Xs
B)
]′ (

βtB − βsB
)
(17)

These are the same components as in the interventionist perspective and after chang-
ing groups with time-points, the SSM could also be reduced to the twofold decomposition
of Wellington (1993).

Note that each decomposition retains its substantively different interpretation even
if they can each be transformed into a different decomposition. When interpreting the
results they should therefore not be treated as 1:1 substitutes for each other.
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Figure 2: Relationship among decomposition approaches

group-wise over time time-wise over groups

2-fold WL

3-fold Interventionist SSM

4-fold MPJD SW

5-fold KIM

expand first component
WL1 = ∆YE + ∆YI

swap groups with
time-points

swap groups with
time-points &
other evaluations

Separate intercept
component & aver-
aged evaluations

Note: SSM=Simple subtraction method (Section 4.1), WL=(Wellington, 1993) (Sec-
tion 4.3), MPJD=(Makepeace et al., 1999), (Section 4.5), SW=(Smith and Welch, 1989)
(Section 4.2), KIM=(Kim, 2010) (Section 4.6)
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5 An interventionist perspective on the decomposi-
tion of change

While all of the decomposition approaches that we discussed in the previous section
have their uses, we argue that the interventionist approach is best suited to address a
certain kind of research question which regularly arises in applied social science research
and similar fields like epidemiology or public health (see section 4.4). The premise of
this approach is that we take the initial differences in levels between the groups at the
reference time point s as given. We then ask how the difference between the groups could
have changed if either the change in endowments or the change in coefficients had been
been different. This reflects real-world applications in which either an intervention is
designed, or a (natural) experiment or policy change occurs between s and t and is
evaluated at time point t. The initial differences in both coefficients and endowments
at time point s are seen as inextricably linked to an explanation of change, as any
change is built on the existing levels at s. These initial levels are assumed to be
beyond intervention and are therefore not subject to counterfactual predictions within
the decomposition approach.

There are two combinable types of counterfactual predictions about endowments
and coefficients at time s: (1) across groups and (2) across time (and a combination of
both). The former would make statements such as “if group A had the same endowment
as group B at time point s”, while the latter would make statements such as “if group
A already had the coefficients of time t at time point s”.

From these two types of counterfactual statements we can derive two formal require-
ments for a decomposition approach to conform to the assumptions of our interventionist
perspective. First, no component should contain a term that takes group differences at
s (which constitutes a counterfactual prediction at time s across groups). Instead, only
differences of within-group change9 should be used for the decomposition. Second,
changes within groups should only be multiplied (valued) at the initial levels (s) or at
change (t− s), but not at the levels at t (or any function of the levels, endowments, or
coefficients at t). If we value at levels of t we make a counterfactual prediction at time
s across time.

Except for the interventionist approach, all other decompositions described in sec-
tion 4 violate these assumptions. They are therefore not applicable under an inter-
ventionist perspective10. In such a research scenario, it is therefore desirable to use a
decomposition that can attribute changes in the gaps to changes in endowments and
coefficients given the initial differences in levels in the outcome between groups. We de-
signed the interventionist approach to fill exactly this lack of a decomposition approach
to the mean based decompositions of change in linear models.

Thus, using this decomposition, we seek to answer questions such as how group
differences in an outcome would have developed over time had both groups’ characteris-
tics or coefficients changed in the same way. These are counterfactual statements about

9Because we assume that we could manipulate the change through an intervention.
10For SSM it is all three components, for SW, it is components (i), (ii) and (iv), for WL, it is

component (1), for MPJD, it is all components, and for KIM it is components (D2)− (D5) that violate
the assumptions.
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changes that might have been the result of an intervention, policy change, or natural
experiment, or any other processes or events that occur between two time points s and
t. To this end, we need to find a decomposition that does not violate our two interven-
tionist assumptions. This can be achieved by setting the endowments and coefficients
at which within-group changes are valued to their groups’ initial values.11

6 The xtoaxaca command

The xtoaxca postestimation command provides decomposition techniques after any
kind of regression based growth curve analysis. For the programming of xtoaxca Stata
version 14.1 was used. Currently xtoaxaca supports the analysis of stored models
estimated using reg, xtreg, or mixed.

xtoaxaca relies heavily on the use of factor-variables. Users are therefore actively
encouraged to specify all variables in their regression command explicitly as factor
variables (including non-interacted, continuous variables). All variables which are not
specified as fv-variables are treated as continuous and the use of dummy variables is
not supported.

The exception to this rule are interactions among decompositions variables. These
must be created as hand-made interaction terms (possibly using dummy variables) and
interacted using fv-syntax with time and grouping variables. The example in section
7.5 shows how this can be achieved.

The maximum length of variable names for decomposition variables that is supported
by xtoaxaca is 20.

A longitudinal decomposition using xtoaxaca works in two steps.

1. Estimate a (growth curve) model. This model should condition on the variables
that are used as decomposition variables to explain the gap over time between the
groups.

2. xtoaxaca takes the model and the data set as input to decompose the gaps over
time using Stata’s margins command in the background.

11However, by definition and as mentioned above, it does depend on the differences in the initial levels
of coefficients, and would be regarded as conflating change in endowments with levels of coefficients in
Kim’s (2010) analytical perspective.
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Figure 3: xtoaxaca work flow

6.1 Syntax

The general syntax is:

xtoaxaca varlist, groupvar(varname) groupcat(##) timevar(varname)

times(#
[

#
]
) timeref(#) timebandwidth(#) model(name)

[basemodel(name)] [weights(varname)] [change(changetype)]

[normalize(varlist)] [noisily] [detail] [forcesample]
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[twofold(weight|pooled|off)] [resultsdata(string [, replace])]

[blocks(blockname1 = (varlist1)[,blockname2 = (varlist2)...])]

[tfweight(#)] [fmt(#)] [nolevels|nochange] [seed(#)]

[bootstrap(#)]

varlist contains all decomposition variables and should include all variables inter-
acted with the variable specified in timevar(). Otherwise, the decomposition will be
incomplete.

groupvar(varname) specifies the group variable for decomposition.
groupcat(##) identifies the group categories in groupvar between which differences

across time will be decomposed. Only two codes are allowed.
timevar(varname) specifies the time variable in the growth curve model.
times(numlist) defines the values of timevar at which group differences will be de-

composed.
timeref(#) defines the reference time point for which change decomposition will be

calculated. Is required if the option change is specified. It must be one of the time
points specified in times.

timebandwidth(#) defines the time span around the time points in times(numlist)

that is used to estimate the time-specific means of the decomposition variables. This
option is only required if timevar is specified as a continuous (factor) variable in
the models. Default is 0.1.

model(name) is the name under which the (growth curve) model is stored. Please en-
sure that the basic functional form of timevar and possible interactions with the
groupvar variable are correctly specified. Please use ariable notation for all vari-
ables in the model. Therefore, do not use dummy variables to represent categorical
variables (both timevar, groupvar, and decomposition variables), but use the factor
variable prefix ”i.” instead. All variables without a fv-prefix are treated as continu-
ous by xtoaxaca.

basemodel(name) is the name under which an optional baseline model is stored. This
is not necessary for the decomposition. It can be used to ensure that the func-
tional form and interactions of the timevar with the grouping variable are correctly
specified. This might be helpful if the code of model contains many complicated
interactions which might be prone to errors or typos. Please use factor variable no-
tation for all variables in the baseline model. Therefore, do not use dummy variables
to represent categorical variables (both timevar, groupvar and decomposition vari-
ables). Instead, use the factor variable prefix ”i.”. All variables without a fv-prefix
are treated as continuous by xtoaxaca.

weights(varname) specifies the variable containing (longitudinal) weights for the esti-
mation of the endowments (means).

change(changetype) changetype may be ssm, interventionist,
interventionist twofold, smithwelch, wellington, mpjd, none, or kim. inter-
ventionist yields the decomposition using the interventionist perspective presented
in this paper (see section 5). ssm gives the simple subtraction method described
in 4.1; smithwelch gives the decomposition by Smith and Welch (1989) described
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in 4.2; wellington gives the decomposition by Wellington (1993) described in 4.3;
mpjd gives the Makepeace et al. (1999) decomposition described in section 4.5; kim
gives the decomposition presented in Kim (2010) described in 4.6. twofold gives
the decomposition presented in section A.1 in the appendix, which is akin to the
original twofold KOB decomposition. The default is none which only shows the
decomposition of levels.

normalize(varlist) varlist may be any categorical variables from the decomposition
varlist . The categorical variables will be normalized according to the method by
Yun (2005), as described in the section 3.2

noisily yields more output from the in-between estimation steps of e.g. matrices of
means and coefficients over time. If you specify noisily with bootstrap(), you also
need to specify resultsdata().

detail same as noisily.
forcesample forces the command to accept differences in the current sample in the

dataset and the samples used to estimate the models. If a basemodel is speci-
fied, it also forces xtoaxaca to accept differences in sample size between model and
basemodel. In normal circumstances, it is not recommended to use this option and
it should only be used if the output is interpreted in accordance with the differences
between the samples.

twofold(weight|pooled|off) gives the twofold decomposition of the level over time.
weight allows the user to specify a weight for the coefficients. pooled uses the
method proposed by Oaxaca and Ransom (1994), which is equivalent to a pooled
regression model and takes into account the relative amount of variance in the de-
composition variables between the two groups found in the data. Default is off,
which conducts the threefold decomposition.

resultsdata(string [, replace]) saves the main decomposition results in a results data
set that can be used for further results-presentation in tables or graphs.

blocks(blockname1 = (varlist1)[,blockname2 = (varlist2)...]) allows the cal-
culation of decomposition in blocks of variables. This is especially useful together
with the bootstrap() option as it will generate block-specific standard errors. If you
specify blocks(), you also need to specify resultsdata().

tfweight(#) specifies the weight which is to be given to the first of the two groups
specified in groupcat(##). Only allowed if twofold(weight) is specified.

fmt() specifies the decimal points that are to be used in the results presentation.
nolevels skips the output of the decomposition of levels.
nochange skips the output of the decomposition of change.
seed() specifies the seed for the bootstrapping option. The default is the seed currently

set in the Stata session.
bootstrap() Estimates standard errors via bootstrapping with iterations. In addition

to the normal results, it returns an e(dec b) and e(dec V) matrix for further process-
ing. If bootstrapped clustered standard errors are to be estimated, the clustering has
to be specified in the original regression command using Stata’s cluster(varlist)
option.
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Table 6.1: Overview of stored results after xtoaxaca
Method Stored results

absolute values percentages
Levels e(E/C/CE) e(pE/pC/pCE)
SSM e(dE/dC/dCE) e(pdE/pdC/pdCE)
Interventionist e(dE/dC/dCE) e(pdE/pdC/pdCE)
Smith and Welch (1989) e(sw X) e(psw X)
Wellington (1993) e(wl X) e(pwl X)
Makepeace et al. (1999) e(mpjd X) e(pmpjd X)
Kim (2010) e(kim DX) e(pkim DX)
Note: X stands for the different components within one method.

Table 6.2: Overview of additional results stored after xtoaxaca
Name Content
catXcoefmean coefficients for category X of group variable
catXendowmean means of decomposition variables for category X of group variable
changemodel change in the gap predicted by the model
changeobserved change in the gap as observed in the dataset
meansmodel group means predicted by the model
meansobserved group means as observed in the dataset
(p)(d)refmat contribution of RE/FE to the decomposition (p for percentage, d for change)
summarylevels summary matrix of level decomposition results
summarychange summary matrix of change decomposition results

6.2 Storing results

When using the xtoaxaca command, the results of the original regression command are
retained in Stata’s e() format. Additionally, the user will find matrices specific to the
xtoaxaca command which are named after the decomposition method chosen (see table
6.1).

The resultsdata option allows users to save the results matrices as a dataset as
well, which can be useful if they are to presented in graphical form. The resultsdata

option will also store all draws from the bootstrapping procedure if this has been chosen
as an option. There are also several additional results which are saved by xtoaxaca as
described in table 6.2.
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7 Example: Increasing household income inequality
and composition effects

7.1 Example 1 - Decomposition of changes in household income
between East and West Germany

To demonstrate the capabilities of the xtoaxaca command, we take an example from
research on income inequality and examine the extent to which the decreasing gap in
household income between households in the new and old German federal states can
be traced back to their changing household composition. To this end, we use data
from the German Socioeconomic Panel (SOEP) v.34.1 (Goebel et al., 2019),liebig.2018,
and compute the logarithmized monthly net equivalent and inflation-adjusted household
income. In addition to income data, we use information on the households’ composi-
tion and employment situation (hh emp). The variable we build from this information
captures whether the household consists of a full-time working person, a full-time part-
time working person, a not working person, a full-time and part-time working couple,
a couple both working full-time, and other constellations.

In a first step, we estimate the panel regression model and store its results. Because
we are interested in the effects of changing household compositions over time, the model
includes a threefold interaction term which includes time, the group variable hh east,
and the decomposition variable of interest hh emp. In this way, the model predicts
income changes for each group and every household composition at every year. Note
that we model time as a categorical variable in this example. However, the xtoaxaca

command does not assume any functional form of time and that we can also specify
time as a continuous variable.

After having estimated the model, we run the xtoaxaca command. In our example,
we specify hh emp as the decomposition variable we are interested in, the group variable
(hh east), and the two values of the group variable which we want to compare (0 and 1).
Further, we need to specify the time variable (year) and the specific time values (2006
2010 2014), the reference time (2006), and the name of the stored estimated model.
Finally, we tell xtoaxaca that we wish to use the interventionist approach, denoted by
change(interventionist).

. qui: eststo est1: xtreg hh_inc i.year##i.hh_east##i.hh_emp

.

. xtoaxaca hh_emp, groupvar(hh_east) groupcat(0 1) timevar(year) ///
> times(2006 2010 2014) timeref(2006) ///
> model(est1) change(interventionist)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de

Decomposition of Levels

Summary of level decomposition

year
2006 2010 2014
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Level
non-parame~c 0.199 0.182 0.176

Decomp
Endowments 0.011 0.010 0.018
Coefficients 0.170 0.151 0.136
Interaction 0.002 -0.002 -0.002
RE 0.017 0.023 0.025
Total 0.199 0.182 0.176

Decomp %
Endowments 5.404 5.647 9.998
Coefficients 85.200 82.685 77.310
Interaction 0.764 -1.063 -1.324
RE 8.631 12.730 14.017
Total 100.000 100.000 100.000

RE = random effects.

Decomposition of Change

Summary of changes in the outcome

year
2006 2010 2014

Change
non-parame~c 0.000 -0.017 -0.023

Decomp
Endowments 0.000 -0.007 -0.004
Coefficients 0.000 -0.015 -0.024
Interactions 0.000 -0.001 -0.002
RE 0.000 0.006 0.008
Total 0.000 -0.017 -0.023

Decomp %
Endowments . 40.920 16.559
Coefficients . 89.446 105.874
Interactions . 5.111 10.334
RE . -35.478 -32.767
Total . 100.000 100.000

RE = random effects.
For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to Panel
> Data. https://doi.org/10.31235/osf.io/egj79

.

By default, xtoaxaca displays a table of the decomposition of levels and another ta-
ble showing the decomposition of change. In the first table, the first row (Observed) de-
notes the mean group differences in log household incomes as estimated non-parametrically
from the observed data. The rows in the Decomp section show the results of the income
gaps’ decomposition into an endowments part, a coefficient part, an interactions part,
and a part that is due to the time-constant error term (RE). In our example, household
compositions hardly contribute to the gap in household income, and their contribution
grows only in 2018. As the RE component is close to 0, our model is also reasonably
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well specified. However, the RE component is non-negligible compared to the size of the
other components. Further, we see that the decomposed parts sum up to the difference
predicted by the base model for all years. The lower part of the table displays the
relative contribution of the four decomposition effects to the overall gap.

The second table displays the results of the decomposition of change. We see the
change in the income gap in comparison to the reference year 2006 in the second and
third row. For the observed data, the gap decreased between 2006 and 2014 by 0.032
log incomes. We can now examine the role of changing endowments and coefficients
over time. As we can see, the changing household composition decreased the gap by
0.004 log incomes and the changing coefficients contributed 0.024 log incomes to the
narrowing gap between 2006 and 2014. The part that is due to differences between
groups in the time-constant error term increased the gap by 0.008 log incomes. While
this part is rather small, it still indicates that group-specific panel dropout has a small
effect on the results.

7.2 Bootstrapping for standard errors

So far, we have decomposed the changes in household incomes between 2006 and 2014
in Germany and have the estimates, but no standard errors. The xtoaxaca command
provides a bootstrap option to estimate the standard errors. As there have been no at-
tempts to analytically derive standard errors for all decomposition models of change over
time, we believe that bootstrapping is a viable alternative. By default, xtoaxaca does
not bootstrap the standard errors because it is a potentially time-consuming endeavor.

Below, we see the same example as above with bootstrapped standard errors. The
point estimates of the decomposition components are by design identical to the previous
example. However, we now get a standard error below the point estimate and can now
be more confident that the households’ composition contributes about 5.4 percent to the
income gap in 2006 and almost 10 percent in 2014, as the components are statistically
significant. The size of the component of households’ changing composition is small in
size, however, and is not statistically significant.

. qui: eststo est2: xtreg hh_inc i.year##i.hh_east i.year##i.hh_east##i.hh_emp

.

.

. xtoaxaca hh_emp, groupvar(hh_east) groupcat(0 1) timevar(year) ///
> times(2006 2010 2014) timeref(2006) ///
> model(est2) change(interventionist) bootstrap(100)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de
WARNING: Bootrapping requires the original data set for estimation and the regressions need to be repeated 100 times
> . This may take some time.
(running xtoaxaca_bootstrap_wrapper on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Decomposition of Levels

year
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2006 2010 2014
b/se b/se b/se

Outcome
Observed 0.199*** 0.182*** 0.176***

(0.011) (0.013) (0.013)
Decomp
Endowments 0.011*** 0.010* 0.018**

(0.003) (0.004) (0.006)
Coefficients 0.170*** 0.151*** 0.136***

(0.010) (0.010) (0.011)
Interactions 0.002 -0.002 -0.002

(0.002) (0.002) (0.002)
RE 0.017 0.023* 0.025*

(0.010) (0.011) (0.012)
Total 0.199*** 0.182*** 0.176***

(0.011) (0.013) (0.013)
Decomp%
Endowments 5.404*** 5.647* 9.998***

(1.503) (2.336) (2.948)
Coefficients 85.200*** 82.685*** 77.310***

(4.994) (5.672) (6.486)
Interactions 0.764 -1.063 -1.324

(1.060) (0.954) (1.332)
RE 8.631 12.730* 14.017*

(4.905) (5.517) (6.309)
Total 100.000 100.000 100.000

(.) (.) (.)

Decomposition of Change

year
2006 2010 2014
b/se b/se b/se

Outcome
Observed 0.000 -0.017 -0.023

(.) (0.012) (0.014)
Decomp
Endowments 0.000 -0.007* -0.004

(.) (0.003) (0.004)
Coefficients 0.000 -0.015 -0.024**

(.) (0.008) (0.009)
Interactions 0.000 -0.001 -0.002

(.) (0.001) (0.002)
RE 0.000 0.006 0.008

(.) (0.008) (0.010)
Total 0.000 -0.017 -0.023

(.) (0.012) (0.014)
Decomp%
Endowments 0.000 40.920 16.559

(.) (237.566) (102.940)
Coefficients 0.000 89.446 105.874

(.) (283.015) (458.214)
Interactions 0.000 5.111 10.334

(.) (43.023) (42.913)
RE 0.000 -35.478 -32.767

(.) (397.911) (466.494)
Total 0.000 100.000 100.000
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(.) (.) (.)

For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to Panel
> Data. https://doi.org/10.31235/osf.io/egj79

7.3 Blocks of variables

It is also possible to combine two or more variables to blocks and get standard error
via bootstrapping for their combined contribution to the decomposition of both levels
and change. The relevant option is blocks and the resultsdata option needs to be
specified as well. Below is an example of code an output for variable blocks. The results
for the variables are shown after all other output is given. Here, the contribution of all
categories of the variables hh emp and hh edu are combined into the block socio. The
variable hh married is treated separately. Itt is possible to specify more than one block
of variables.

. qui: eststo est3: xtreg hh_inc i.year##i.hh_east i.year##i.hh_east##i.(hh_emp hh_married hh_edu) , fe

.

.

.

. xtoaxaca hh_emp hh_married hh_edu, groupvar(hh_east) groupcat(0 1) timevar(year) ///
> times(2006 2010 2014) timeref(2006) normalize(hh_emp hh_married hh_edu) ///
> model(est3) change(interventionist) bootstrap(10) detail ///
> blocks(socio = (hh_emp hh_edu)) resultsdata(${path}Example/results_example1.dta,replace)
[output omitted]

Detailed Decomposition of Levels - Variable Blocks

Level Component: C

2006 2010 2014
b/se b/se b/se

hh_married~n -0.009 -0.004 0.003
(0.005) (0.007) (0.005)

hh_married_1 0.010 0.005 -0.004
(0.006) (0.008) (0.005)

socio -0.119* -0.109** -0.075
(0.051) (0.039) (0.070)

Intercept 0.244*** 0.216** 0.167*
(0.070) (0.067) (0.074)

Total 0.126*** 0.108** 0.092*
(0.036) (0.041) (0.038)

Level Component: CE

2006 2010 2014
b/se b/se b/se

hh_married~n 0.001 0.000 -0.000
(0.001) (0.001) (0.000)

hh_married_1 0.001 0.000 -0.000
(0.001) (0.001) (0.000)
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socio 0.035*** 0.030** 0.021
(0.010) (0.010) (0.011)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total 0.037*** 0.031** 0.020
(0.011) (0.011) (0.011)

Level Component: E

2006 2010 2014
b/se b/se b/se

hh_married~n -0.000 0.000 0.000
(0.000) (0.001) (0.000)

hh_married_1 -0.000 0.000 0.000
(0.000) (0.001) (0.000)

socio -0.057*** -0.060*** -0.037**
(0.016) (0.012) (0.014)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total -0.058*** -0.060*** -0.036**
(0.016) (0.012) (0.014)

Percentages of Level Component: C

2006 2010 2014
b/se b/se b/se

hh_married~n -4.304 -2.344 1.971
(2.681) (3.883) (2.623)

hh_married_1 5.018 2.694 -2.363
(3.089) (4.299) (3.109)

socio -59.852* -59.522** -42.358
(23.887) (20.890) (40.748)

Intercept 122.507*** 118.227*** 94.820*
(34.509) (35.711) (44.731)

Total 63.368*** 59.055** 52.069*
(19.209) (21.464) (21.899)

Percentages of Level Component: CE

2006 2010 2014
b/se b/se b/se

hh_married~n 0.491 0.211 -0.175
(0.335) (0.480) (0.248)

hh_married_1 0.491 0.211 -0.175
(0.335) (0.480) (0.248)

socio 17.445** 16.477** 11.835
(5.487) (6.298) (7.070)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total 18.427** 16.898* 11.486
(5.962) (6.843) (6.963)

Percentages of Level Component: E

2006 2010 2014
b/se b/se b/se
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hh_married~n -0.064 0.000 0.128
(0.231) (0.277) (0.182)

hh_married_1 -0.064 0.000 0.128
(0.231) (0.277) (0.182)

socio -28.714*** -32.669*** -20.913*
(8.371) (7.227) (8.747)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total -28.842*** -32.669*** -20.657*
(8.651) (7.341) (8.659)

7.4 Example 2 - An intervention

As a further example, we simulate a dataset with a group variable (group), two time
points, and two binary intervening variables, of which the first is exogeneous (int1)
and the second is endogenous to the first one (int2). The purpose of this example is to
demonstrate how xtoaxaca can decompose change in group differences over time using
multiple intervening and exogeneous decomposition variables similar to experimental
settings. For instance, an exogenous treatment effect, such as a policy change, could
lead to increases in one group’s endowments, and we can then ask whether the treatment
has any effect on the changing group differences.

Similar to the previous example, the first step involves estimating the model which
now includes two interaction terms: the interaction of the group variable with time and
the first decomposition variable, and the interaction of the group variable with time and
the second decomposition variable. These two interaction terms are included so that the
xtoaxaca command can estimate the groups’ counterfactual trajectories. In a second
step, we call the xtoaxaca command followed by the two decomposition variables and
specify that we choose the interventionist decomposition method (interventionist).

.

. qui: eststo m: xtreg dep i.time##i.group##i.int1 i.time##i.group##i.int2, i(id)

.

. xtoaxaca int1 int2, groupvar(group) groupcat(0 1) timevar(time) times(1 2) ///
> timeref(1) model(m) change(interventionist)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de

Decomposition of Levels

Summary of level decomposition

time
1 2

Level
non-parame~c 1.623 3.770

Decomp
Endowments 0.034 -0.005
Coefficients 1.711 3.824
Interaction -0.122 -0.049
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RE -0.000 -0.000
Total 1.623 3.770

Decomp %
Endowments 2.086 -0.132
Coefficients 105.445 101.424
Interaction -7.531 -1.292
RE -0.000 -0.000
Total 100.000 100.000

RE = random effects.

Decomposition of Change

Summary of changes in the outcome

time
1 2

Change
non-parame~c 0.000 2.147

Decomp
Endowments 0.000 -0.097
Coefficients 0.000 2.265
Interactions 0.000 -0.021
RE 0.000 0.000
Total 0.000 2.147

Decomp %
Endowments . -4.510
Coefficients . 105.482
Interactions . -0.972
RE . 0.000
Total . 100.000

RE = random effects.
For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to Panel
> Data. https://doi.org/10.31235/osf.io/egj79

.

As can be seen from the output, changing endowments cause the gap to decrease
by 4.5% over time, while changing coefficients increase the gap by 105%. Thus, we
conclude that the increasing gap between the groups over time is not caused by their
changing endowments. Quite the contrary, they decrease the gap over time, while all
of the increase in the gap can be attributed to changing coefficients. If the role of
the changing return to the decomposition variables is to be investigated, results using
the detail option should be used (as illustrated in the last example in section 7.5),
because the intercept is part of the coefficient block. A change in the intercept does
not usually have a meaningful substantive interpretation with respect to the intervening
variables and therefore might be considered an unexplained part within the coefficient
component. It should also be noted that because the example uses simulated data, the
contribution of the time-constant error term is now exactly zero as expected by model
assumptions.
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7.5 Example 3 - Interaction of decomposition variables

In the last example, we show how a regression model has to be set up if interactions of
decomposition variables are to be used in xtoaxaca. For this purpose we distinguish
between three types of interactions: Categorical-categorical, Continuous-continuous,
and categorical-continuous interactions.

7.5.1 Categorical-categorical interactions

For these kinds of interactions we recommend generating a new variable which contains
all combinations of the two categorical variables.

egen newvar = group(var1 var2)

Then, we can use this new variable (newvar) as a decomposition variable in both
the regression and the xtoaxaca command.

7.5.2 Continuous-continuous interactions

For these kinds of interactions the key is to create interaction terms by hand and then
combine them with the standard Stata-fv. notation of the group and time variable.

.

.

.

. *** Create interaction term for a squared term

. replace exp = exp-10
(10,000 real changes made)

. gen exp2 = exp*exp

.

.

. *** for interactions among decomposition variables (squared experience)

. *** a hand-made interaction-term is used

. qui: eststo est3: xtreg inc i.group##i.time##c.(exp exp2) i.group##i.time##i.edu

.

. xtoaxaca edu exp exp2, groupvar(group) groupcat(0 1) timevar(time) nolevels ///
> times(4 2 1) model(est3) timeref(2) change(interventionist) detail normalize(edu)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de

Group variable: group (0,1)
Decomposition variables: edu exp exp2
Times: time (4 2 1)

[ Progress ] Calculating endowment means for each time ...

[ Progress ] Calculating mean outcomes ...
[ Estimating random effects ] Estimating mean of random effects for both groups ...
[ Progress ] Calculating coefficients ...

[ Progress ] Running level decomposition ...
[ Progress ] Running Interventionist decomposition ...

[ Progress ] Display output ...

Outcome
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Mean predicted outcome differences between the groups (empirical values)

Time
4 2 1

Group A 3663.107 2983.06 2715.14
Group B 6524.738 4533.923 3951.633
Diff -2861.632 -1550.863 -1236.493

Endowments

Endowment means for each time (Group (group) 0, variables: edu exp exp2)

Time
4 2 1

0.edu .0914697 .1438849 .1819116
1.edu .3329908 .4110997 .4635149
2.edu .3103803 .307297 .270298
3.edu .2651593 .1377184 .0842754
exp -4.367934 -4.75334 -4.971223
exp2 24.46249 27.72148 29.62076
Intercept 1 1 1

Endowment means for each time (Group (group) 1, variables: edu exp exp2)

Time
4 2 1

0.edu .0681597 .2755599 .5423564
1.edu .2375852 .4333009 .3417722
2.edu .3446933 .2259007 .1051607
3.edu .3495618 .0652386 .0107108
exp 2.057449 .661149 -.0467381
exp2 15.46933 11.35054 10.73418
Intercept 1 1 1

Coefficients

Group A coefficients

Time
r1 r2 r3

0.edu -235.8521 83.33642 238.1277
1.edu -78.87413 22.97487 67.34441
2.edu 76.95988 -28.07654 -98.34574
3.edu 237.7663 -78.23475 -207.1264
exp 28.87513 -4.020149 -14.08591
exp2 .9153148 .5256663 .278332
Intercept 3727.745 2947.345 2606.376

Group B coefficients

Time
r1 r2 r3

0.edu -312.1004 93.12871 297.7939
1.edu -98.5876 55.99646 72.83483
2.edu 108.9784 -35.06983 -137.1094
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3.edu 301.7096 -114.0553 -233.5193
exp 79.22486 -32.17301 -65.14026
exp2 .2232951 -.2076859 -.0671643
Intercept 6259.948 4522.989 3779.826

Decomposition of Change

Summary of changes in the outcome

time
4 2 1

Change
non-parame~c -1,310.769 0.000 314.370

Decomp
Endowments 93.165 0.000 -41.610
Coefficients -1,073.681 0.000 431.704
Interactions -330.253 0.000 -75.724
RE 0.000 0.000 0.000
Total -1,310.769 0.000 314.370

Decomp %
Endowments -7.108 . -13.236
Coefficients 81.912 . 137.324
Interactions 25.195 . -24.088
RE 0.000 . 0.000
Total 100.000 . 100.000

RE = random effects.

Total change: Endowments

time
4 2 1

0.edu 14.947 0.000 -21.677
1.edu 9.165 0.000 6.330
2.edu 4.079 0.000 -3.196
3.edu 22.458 0.000 -2.038
exp 43.374 0.000 -21.899
exp2 -0.858 0.000 0.870
Intercept 0.000 0.000 0.000
Total 93.165 0.000 -41.610

Note: Change in group differences over time if only the groups´ endowments had changed.

Total change: Coefficients

time
4 2 1

0.edu 65.738 0.000 -34.125
1.edu 25.111 0.000 10.944
2.edu -0.263 0.000 1.457
3.edu 16.395 0.000 -9.957
exp -230.013 0.000 69.642
exp2 5.910 0.000 -8.451
Intercept -956.559 0.000 402.194
Total -1,073.681 0.000 431.704
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Note: Change in group differences over time if only the groups´ coefficients had changed.

Total change: Interactions

time
4 2 1

0.edu -67.314 0.000 -48.718
1.edu -22.299 0.000 3.867
2.edu -16.788 0.000 -9.720
3.edu -77.940 0.000 0.374
exp -142.867 0.000 -21.144
exp2 -3.045 0.000 -0.383
Intercept 0.000 0.000 0.000
Total -330.253 0.000 -75.724

Note: Change in group differences over time attributable to the interaction of change in endowments and change in
> coefficients.

Total Percentages of change: Endowments

time
4 2 1

0.edu -1.140 . -6.896
1.edu -0.699 . 2.013
2.edu -0.311 . -1.016
3.edu -1.713 . -0.648
exp -3.309 . -6.966
exp2 0.065 . 0.277
Intercept 0.000 . 0.000
Total -7.108 . -13.236

Total Percentages of change: Coefficients

time
4 2 1

0.edu -5.015 . -10.855
1.edu -1.916 . 3.481
2.edu 0.020 . 0.464
3.edu -1.251 . -3.167
exp 17.548 . 22.153
exp2 -0.451 . -2.688
Intercept 72.977 . 127.937
Total 81.912 . 137.324

Total Percentages of change: Interactions

time
4 2 1

0.edu 5.135 . -15.497
1.edu 1.701 . 1.230
2.edu 1.281 . -3.092
3.edu 5.946 . 0.119
exp 10.899 . -6.726
exp2 0.232 . -0.122
Intercept 0.000 . 0.000
Total 25.195 . -24.088
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For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to Pane
> l Data. https://doi.org/10.31235/osf.io/egj79

.

The first difference to the previous examples is the additional output that is gener-
ated by using the detail option. It provides not only the components of the decompo-
sition but also the estimates for the endowments and coefficients for each variable and
group. Note that for the interpretation of each variable and its contribution separate
assumptions about the reference category or value have to be made (see section 3.2 or
Yun (2005); Jann (2008)).

The second difference is that this example shows interactions of two continuous de-
composition variables. If interactions of decomposition variables are used, it is important
to note that the individual contribution of each interacted variable is now conditional
on the value of the other variable. This means that in our example that we interacted
experience with itself to get a squared term in the regression equation. The contribution
of labor market experience (exp) now varies along the values of labor market experience.

For this particular example, we could state that the difference in change between
groups A and B and time points 4 and 2 is explained about 20 percent by the difference
in change in coefficients in the experience variable at the 15 years of experience in the
sample (value of zero). If labor market experience is not centered at a meaningful value
this might not be a particular useful result.

7.5.3 Categorical-continuous interactions

The strategy described in 7.5.2 for continuous-continuous interactions technically also
works for categorical-continuous interactions. There are two limitations, however. First,
normalization (3.2) for the categorical variable is not possible. This also implies that
we cannot interpret the results for the decomposition by (Kim, 2010) as originally
intended, because this decomposition relies on normalization. Second, we believe that
it is overall very difficult the detailed output for such a decomposition. users might
consider performing the decomposition separately for the categorical variable they wish
to interact with the continuous variable to ease interpretation.

8 Limitations

We focus on continuous outcomes and linear models but believe that the general ap-
proach can be generalized to non-linear models as well, as it has been for the cross-
sectional KOB decomposition Bauer and Sinning (2008); Jann (2008). Furthermore,
applying regression with recentered influence functions (RIF) in the modeling step
might also be a way to circumvent the current restrictions to linear models of xtoaxaca
(Essama-Nssah and Lambert, 2012; Firpo et al., 2018) as exemplified in the user-written
Stata command oaxaca rif (?).
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Our decomposition approach is further limited to mean decompositions. Longitudi-
nal decompositions of or using other distributional statistics (e.g. percentiles, variances)
might also be useful as user-friendly programs (Fortin et al., 2011; Blau and Kahn, 1992;
Juhn et al., 1993).

9 Conclusion

We provide a systematical extension of the KOB-decomposition to longitudinal (and
multilevel) data. We reviewed five central approaches to the decomposition of change.
We noted that none of them is directly useful for the evaluation of an intervention,
policy changes, or natural experiments. We proposed an extension of the Wellington
(1993) decomposition of change over time from an interventionist perspective. We
introduced the xtoaxaca command, which implements the decomposition of levels and
change (all six variants) over time in a user-friendly postestimation command for Stata.
We are open to suggestions from users of xtoaxaca concerning new functions and other
improvements so that we can update and improve it regularly.
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Härdle, W. K., M. Müller, S. Sperlich, and A. Werwatz. 2012. Nonparametric and
semiparametric models. Springer Science & Business Media.

Jann, B. 2008. The Blinder-Oaxaca decomposition for linear regression models. The
Stata Journal 8(4): 453–479.

Juhn, C., Murphy, Kevin, M., and B. Pierce. 1993. Wage Inequality and the Rise in
Returns to Skill. The Journal of Political Economy 101(3): 410–442.

Kalton, G., and I. Flores-Cervantes. 2003. Weighting methods. Journal of official
statistics 19(2): 81.

Kim, C. 2010. Decomposing the Change in the Wage Gap Between White and Black
Men Over Time, 1980-2005: An Extension of the Blinder-Oaxaca Decomposition
Method. Sociological Methods & Research 38(4): 619–651.

Kim, J. K., and J. J. Kim. 2007. Nonresponse weighting adjustment using estimated
response probability. Canadian Journal of Statistics 35(4): 501–514.

Kitagawa, E. M. 1955. Components of a Difference Between Two Rates.
Journal of the American Statistical Association 50(272): 1168–1194. URL
http://www.tandfonline.com/doi/abs/10.1080/01621459.1955.10501299.

Machado, J. A. F., and J. Mata. 2005. Counterfactual decomposition of changes in
wage distributions using quantile regression. Journal of Applied Econometrics 20(4):
445–465.

Makepeace, G., P. Paci, H. Joshi, and P. Dolton. 1999. How Unequally Has Equal Pay
Progressed Since the 1970s? The Journal of Human Resources 34(3): 534–556.

Morgan, S. L. S. L., and C. Winship. 2014. Counterfactuals and causal inference:
methods and principles for social research. 2nd ed. New York: Cambridge University
Press.

Neuman, S., and R. L. Oaxaca. 2003. Gender versus Ethnic Wage Differentials among
Professionals: Evidence from Israel. Annales d’Économie et de Statistique (71/72):
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A Appendix

A.1 Twofold decomposition of change

We can also derive an analog to the twofold KOB within the interventionist perspec-
tive. This based on a model that assumes a valuation of the endowments at a non-
discriminatory coefficient vector.

∆Y l2 = Y lt − Y ls
= E(X l

t)
′βt − E(X l

s)
′βs

βt = WβAt + (I −W )βBt

The common coefficient is defined as a weighted average of the two group-specific
coefficients. Weights can be defined similarly to the implementation of the original KOB
twofold decomposition, as described by (Jann, 2008, 455-457).

In our adaption of the twofold decomposition for change, we have two components.
The first relates to the differences in change in endowments given the same coefficients
at time s ∆YE2. The second component is the remaining unexplained part ∆YU .

∆YE2 =
{[
E(XA

t )− E(XA
s )
]
−
[
E(XB

t )− E(XB
s )
]}′

βs

= E(XA
t )′βs − E(XA

s )′βs − E(XB
t )′βs + E(XB

s )′βs

= E(XA
t )′WβAs + E(XA

t )′(I −W )βBs − E(XA
s )′WβAs − E(XA

s )′(I −W )βBs

− E(XB
t )′WβAs − E(XB

t )′(I −W )βBs + E(XB
s )′WβAs + E(XB

s )′(I −W )βBs
(18)

∆YU = E(XA
t )′βAt − E(XB

t )′βBt + E(XB
s )′WβBs − E(XA

s )′(I −W )βAs

+
[
E(XB

t )− E(XB
s )− E(XA

s )
]′
WβAs +

[
E(XA

s ) + E(XB
t )− E(XA

t )
]′

(I −W )βBt
(19)

The first component mirrors the cross-sectional endowment component of the twofold
decomposition. We immediately see, however, that it violates the formal condition that
no term is to be restricted across groups (coefficient βs). It therefore imagines a situation
in which there would not have been differences in the coefficients at time s, something
that is beyond a potential intervention occurring after s. Still, for specific purposes,
research might find this decomposition useful as well if change is to be decomposed
twofold, similar to the twofold level decomposition in the original KOB approach.
We can also show that together the two components add to the total change over time.
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Proof.

∆YE2 + ∆YU = E(XA
t )′WβAs + E(XA

t )′(I −W )βBs − E(XA
s )′WβAs − E(XA

s )′(I −W )βBs

− E(XB
t )′WβAs − E(XB

t )′(I −W )βBs + E(XB
s )′WβAs + E(XB

s )′(I −W )βBs

+ E(XA
t )′βAt − E(XB

t )′βBt + E(XB
s )′WβBs − E(XA

s )′(I −W )βAs

+
[
E(XB

t )− E(XB
s )− E(XA

s )
]′
WβAs +

[
E(XA

s ) + E(XB
t )− E(XA

t )
]′

(I −W )βBt

= E(XA
t )′βAt − E(XB

t )′βBt − E(XA
s )′WβAs + E(XB

s )′(I −W )βBt

− E(XA
s )′(I −W )βAs + E(XB

s )′WβBs

=
[
E(XA

t )′βAt − E(XA
s )′βAs

]
−
[
E(XB

t )′βBt − E(XB
s )′βBs

]
= ∆Y A −∆Y B

= ∆Y

B Relations between change decompositions and KOB

In this section are the proofs that all decompositions of change presented in section 4
are derivatives of the difference between two KOB decomposition at two time points12.

B.1 Smith and Welch (1989)

Together, the four components fully decompose changes in group differences over time.

12For the SSM this is directly shown in section 4.1
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Proof.

∆Y = i + ii + iii + iv

=
{ [

(E(XA
t )− E(XB

t )
]
−
[
E(XA

s )− E(XB
s )
] }′

βBs

+
[
E(XA

t )− E(XA
s )
]′ (

βAs − βBs
)

+
[
E(XA

t )− E(XB
t )
]′ (

βBt − βBs
)

+ E(XA
t )′
[(
βAt − βBt

)
−
(
βAs − βBs

)]
= E(XA

t )′βBs − E(XB
t )′βBs − E(XA

s )′βBs + E(XB
s )′βBs

+ E(XA
t )′βAs − E(XA

t )′βBs − E(XA
s )′βAs + E(XA

s )′βBs

+ E(XA
t )′βBt − E(XA

t )′βBs − E(XB
t )′βBt + E(XB

t )′βBs

+ E(XA
t )′βAt − E(XA

t )′βBt − E(XA
t )′βAs + E(XA

t )′βBs

= E(XA
t )′βAt − E(XA

s )′βAs − E(XB
t )′βBt + E(XB

s )′βBs

+ E(XA
t )′βBs − E(XA

t )′βBs + E(XB
t )′βBs − E(XB

t )′βBs

+ E(XA
s )′βBs − E(XA

s )′βBs + E(XA
t )′βAs − E(XA

t )′βAs

+ E(XA
t )′βBt − E(XA

t )′βBt + E(XA
t )′βBs − E(XA

t )′βBs

=
[
E(XA

t )′βAt − E(XA
s )′βAs

]
−
[
E(XB

t )′βBt − E(XB
s )′βBs

]
= E(XA

t )′βAt − E(XA
s )′βAs − E(XB

t )′βBt + E(XB
s )′βBs

= ∆Y A + ∆Y B

B.2 Wellington (1993)

As can be shown, WL1 and WL2 fully decompose changes in group differences over
time.

Proof.

∆Y = WL1 + WL2

=
[
(E(XA

t )− E(XA
s )
]′
βAt
[
E(XB

t )− E(XB
s )
]′
βBt

+
(
βAt − βAs

)
E(XA

s )′ −
(
βBt − βBs

)
E(XB

s )′

= E(XA
t )′βAt − E(XA

s )′βAs − E(XB
t )′βBt + E(XB

s )′βBs

+ E(XA
s )′βAt − E(XA

s )′βAt + E(XB
s )′βBs − E(XB

s )′βBs

= E(XA
t )′βAt − E(XA

s )′βAs − E(XB
t )′βBt + E(XB

s )′βBs

=
[
E(XA

t )′βAt − E(XA
s )′βAs

]
−
[
E(XB

t )′βBt − E(XB
s )′βBs

]
= ∆Y A −∆Y B
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B.3 Interventionist

Finally, we can show that the three components added up to give the total difference in
change between the two groups:

∆Y = ∆E + ∆C + ∆I (20)

Proof.

∆E + ∆C + ∆I =
[
E(XA

t )− E(XA
s )
]′
βAs −

[
E(XB

t )− E(XB
s )
]′
βBs

+ E(XA
s )′
(
βAt − βAs

)
− E(XB

s )′
(
βBt − βBs

)
+
[
E(XA

t )− E(XA
s )
]′ (

βAt − βAs
)
−
[
E(XB

t )− E(XB
s )
]′ (

βBt − βBs
)

= E(XA
t )′βAs − E(XA

s )′βAs − E(XB
t )′βBs + E(XB

s )′βBs

+ E(XA
s )′βAt − E(XA

s )′βAs − E(XB
s )′βBt + E(XB

s )′βBs

+ E(XA
t )′βAt − E(XA

t )′βAs − E(XA
s )′βAt + E(XA

s )′βAs

− E(XB
t )′βBt + E(XB

t )′βBs + E(XB
s )′βBt − E(XB

s )′βBs

= E(XA
t )′βAt − E(XA

s )′βAs − E(XB
t )′βBt + E(XB

s )′βBs

=
[
E(XA

t )′βAt − E(XA
s )′βAs

]
−
[
E(XB

t )′βBt − E(XB
s )′βBs

]
= ∆Y A −∆Y B

= ∆Y

B.4 Makepeace et al. (1999)

Together, the components fully decompose the change in group differences over time.
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Proof.

∆Y = ∆Epure + ∆Eprice + ∆Upure + ∆Uprice

=
{ [
E(XA

t )− E(XA
s )
]
−
[
E(XB

t )− E(XB
s )
] }′

βAt

+
[
E(XA

s )− E(XB
s )
]′ (

βAt − βAs
)

+ E(XB
t )′
[ (
βAt − βAs

)
−
(
βBt − βBs

) ]
+
[
E(XB

t )− E(XB
s )
]′ (

βAs − βBs
)

= E(XA
t )′βAt − E(XA

s )′βAs − E(XB
t )′βBt + E(XB

s )′βBs

+ E(XA
s )′βAs − E(XA

s )′βAs + E(XB
t )′βAt − E(XB

t )′βAt

+ E(XB
s )′βAt − E(XA

s )′βAt + E(XB
s )′βAs − E(XB

s )′βAs

+ E(XB
t )′βAs − E(XB

t )′βAs + E(XB
t )′βBs − E(XB

t )′βBs

= E(XA
t )′βAt − E(XA

s )′βAs − E(XB
t )′βBt + E(XB

s )′βBs

=
[
E(XA

t )′βAt − E(XA
s )′βAs

]
−
[
E(XB

t )′βBt − E(XB
s )′βBs

]
= ∆Y A −∆Y B (21)

B.5 Kim (2010)

We can show that the KIM decomposition fully decomposes changes in group differences
over time.
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Proof.

∆Y = D1 + D2 + D3 + D4 + D5

=
[
(β

A
0,t − β

A
0,s)− (β

B
0,t − β

B
0,s)
]

+
[
(β̄
∗A
t − β̄∗As )− (β̄

∗B
t − β̄∗Bs )

]
+

[
E(X∗At ) + E(X∗As ) + E(X∗Bt ) + E(X∗Bs )

4

]′ [ (
β̃
A
t − β̃

A
s

)
−
(
β̃
B
t − β̃

B
s

) ]

+


[
E(X∗At )− E(X∗As )

]
+
[
E(X∗Bt )− E(X∗Bs )

]
2


′ 
(
β̃A
t + β̃A

s

)
2

−

(
β̃B
t + β̃B

s

)
2


+
{[

E(X
∗A
t )− E(X

∗A
s )

]
−
[
E(X

∗B
t )− E(X

∗B
s )

]}′ [ β̃A
t + β̃A

s + β̃B
t + β̃B

s

4

]

+


[
E(X∗At ) + E(X∗As )

]
2

−

[
E(X∗Bt ) + E(X∗Bs )

]
2


′ 
(
β̃A
t − β̃

A
s

)
+
(
β̃B
t − β̃

B
s

)
2


=
[
(β

A
0,t − β

A
0,s)− (β

B
0,t − β

B
0,s)
]

+
[
(β̄
∗A
t − β̄∗As )− (β̄

∗B
t − β̄∗Bs )

]
+
[
E(X

∗A
t )
′
β̃
∗A
t − E(X

∗A
t )
′
β̃
∗A
s − E(X

∗A
t )
′
β̃
∗B
t + E(X

∗A
t )
′
β̃
∗B
s

]
/4

+
[
E(X

∗A
s )
′
β̃
∗A
t − E(X

∗A
s )
′
β̃
∗A
s − E(X

∗A
s )
′
β̃
∗B
t + E(X

∗A
s )
′
β̃
∗B
s

]
/4

+
[
E(X

∗B
t )
′
β̃
∗A
t − E(X

∗B
t )
′
β̃
∗A
s − E(X

∗B
t )
′
β̃
∗B
t + E(X

∗B
t )
′
β̃
∗B
s

]
/4

+
[
E(X

∗B
s )
′
β̃
∗A
t − E(X

∗B
s )
′
β̃
∗A
s − E(X

∗B
s )
′
β̃
∗B
t + E(X

∗B
s )
′
β̃
∗B
s

]
/4

+
[
E(X

∗A
t )
′
β̃
∗A
t + E(X

∗A
t )
′
β̃
∗A
s − E(X

∗A
t )
′
β̃
∗B
t − E(X

∗A
t )
′
β̃
∗B
s

]
/4

−
[
E(X

∗A
s )
′
β̃
∗A
t − E(X

∗A
s )
′
β̃
∗A
s + E(X

∗A
s )
′
β̃
∗B
t + E(X

∗A
s )
′
β̃
∗B
s

]
/4

+
[
E(X

∗B
t )
′
β̃
∗A
t + E(X

∗B
t )
′
β̃
∗A
s − E(X

∗B
t )
′
β̃
∗B
t − E(X

∗B
t )
′
β̃
∗B
s

]
/4

−
[
E(X

∗B
s )
′
β̃
∗A
t − E(X

∗B
s )
′
β̃
∗A
s + E(X

∗B
s )
′
β̃
∗B
t + E(X

∗B
s )
′
β̃
∗B
s

]
/4

+
[
E(X

∗A
t )
′
β̃
∗A
t + E(X

∗A
t )
′
β̃
∗A
s + E(X

∗A
t )
′
β̃
∗B
t + E(X

∗A
t )
′
β̃
∗B
s

]
/4

−
[
E(X

∗A
s )
′
β̃
∗A
t − E(X

∗A
s )
′
β̃
∗A
s − E(X

∗A
s )
′
β̃
∗B
t − E(X

∗A
s )
′
β̃
∗B
s

]
/4

−
[
E(X

∗B
t )
′
β̃
∗A
t − E(X

∗B
t )
′
β̃
∗A
s − E(X

∗B
t )
′
β̃
∗B
t − E(X

∗B
t )
′
β̃
∗B
s

]
/4

+
[
E(X

∗B
s )
′
β̃
∗A
t + E(X

∗B
s )
′
β̃
∗A
s + E(X

∗B
s )
′
β̃
∗B
t + E(X

∗B
s )
′
β̃
∗B
s

]
/4

+
[
E(X

∗A
t )
′
β̃
∗A
t − E(X

∗A
t )
′
β̃
∗A
s + E(X

∗A
t )
′
β̃
∗B
t − E(X

∗A
t )
′
β̃
∗B
s

]
/4

+
[
E(X

∗A
s )
′
β̃
∗A
t − E(X

∗A
s )
′
β̃
∗A
s + E(X

∗A
s )
′
β̃
∗B
t − E(X

∗A
s )
′
β̃
∗B
s

]
/4

−
[
E(X

∗B
t )
′
β̃
∗A
t + E(X

∗B
t )
′
β̃
∗A
s − E(X

∗B
t )
′
β̃
∗B
t + E(X

∗B
t )
′
β̃
∗B
s

]
/4

−
[
E(X

∗B
s )
′
β̃
∗A
t + E(X

∗B
s )
′
β̃
∗A
s − E(X

∗B
s )
′
β̃
∗B
t + E(X

∗B
s )
′
β̃
∗B
s

]
/4

=
[
(β

A
0,t − β

A
0,s)− (β

B
0,t − β

B
0,s)
]

+
[
(β̄
∗A
t − β̄∗As )− (β̄

∗B
t − β̄∗Bs )

]
+ E(X

∗A
t )
′
β̃
∗A
t − E(X

∗A
s )
′
β̃
∗A
s − E(X

∗B
t )
′
β̃
∗B
t + E(X

∗B
s )
′
β̃
∗B
s

= [1, E(X
∗A
t )]

′
[β

A
0,t, β̃

∗A
t + β̄

∗A
t ]− [1, E(X

∗A
s )]

′
[β

A
0,s, β̃

∗A
s + β̄

∗A
s ]

− [1, E(X
∗B
t )]

′
[β

B
0,t, β̃

∗B
t + β̄

∗B
t ] + [1, E(X

∗B
s )]

′
[β

B
0,s, β̃

∗B
s + β̄

∗B
s ]

=
[
E(X

A
t )
′
β
A
t − E(X

A
s )
′
β
A
s

]
−
[
E(X

B
t )
′
β
B
t − E(X

B
s )
′
β
B
s

]
= ∆Y

A −∆Y
B
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