For problems involving MATLAB, turn in printouts of your m-files and obtained numerical results. Use format long e of MATLAB to display your results.

Problem 1. Show that if a nonsingular \(A \in \mathbb{R}^{m \times m} \) has a LU factorization, that is, \(A = LU \), where \(L \) is unit lower triangular and \(U \) is upper triangular, then such factorization is unique. **Hint:** Consider \(L_1U_1 = L_2U_2 \) which implies \(U_1^{-1}L_1 = U_2^{-1}L_2 \).

Problem 2. Let \(A^{(k)} = (a_{ij}^{(k)})_{i,j=1}^m \), \(k = 1, \ldots, m \), be matrices resulting, in the exact arithmetic, from GEPP applied to \(A \in \mathbb{R}^{m \times m} \) (\(A^{(1)} = A \)). Show that if \(A \) is nonsingular, then for each \(k = 1, \ldots, m \), at least one of the coefficients
\[
a_{kk}^{(k)}, \quad i = k, \ldots, m,
\]
is different from zero. **Hint:** Try to prove it by contradiction. (**Remark:** Note that the problem implies that GEPP does not fail on a nonsingular matrix in the exact arithmetic. More precisely, the problem shows that for a nonsingular \(A \) there is always a matrix \(P \), which is a product of permutation matrices, such that \(PA \) has a LU factorization.)

Problem 3. A matrix \(B \in \mathbb{R}^{m \times n} \) is said to be strictly column diagonally dominant (scdd) if
\[
|b_{jj}| > \sum_{i=1, i \neq j}^n |b_{ij}|, \quad j = 1, \ldots, n.
\]

(a) Show that, in the exact arithmetic, GE without pivoting preserves scdd property, that is, show that if GE without pivoting is applied to a scdd \(A \in \mathbb{R}^{m \times m} \), then for each \(k = 1, \ldots, m \), the subblock of \(A^{(k)} \) obtained by deleting from \(A^{(k)} \) the first \(k-1 \) rows and the first \(k-1 \) columns is also scdd. **Hint:** Use induction on \(k \) and consider step \(k \) for obtaining \(A^{(k+1)} \) from \(A^{(k)} \). Also you may want to use the inequalities \(|\alpha + \beta| \leq |\alpha| + |\beta| \), \(|\alpha - |\beta| \leq |\alpha - |\beta| \) that hold for any \(\alpha, \beta \in \mathbb{R} \).

(b) Show that, in the exact arithmetic, GE without pivoting will never fail when applied to a scdd \(A \in \mathbb{R}^{m \times m} \) and that \(|l_{ik}| < 1 \) for all \(k = 1, \ldots, m-1 \) and all \(i = k + 1, \ldots, m \).

Problem 4. Use Matlab “pascal” to generate \(A = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \) compute \(\tilde{b} \) in the system \(A\tilde{x} = \tilde{b} \). Argue that \(A \) and \(\tilde{b} \) are a floating point matrix and a floating point vector, respectively. Solve \(A\tilde{x} = \tilde{b} \) using Matlab “[L,U,P]=lu(A)” and your functions for forward and back substitutions. Compute the relative error \(\|\tilde{x} - \bar{x}\|_2/\|\tilde{x}\|_2 \), where \(\bar{x} \) is the computed solution. Use Matlab “eps” and “cond” compare this error with the theoretical bound \(u\kappa_2(A) \) derived in class.

Problem 5. Consider
\[
A\tilde{x} = \tilde{b} \quad \text{with} \quad A = A_1A_2,
\]
where \(A_1, A_2 \in \mathbb{R}^{m \times m} \) are given nonsingular floating point matrices and \(\tilde{b} \in \mathbb{R}^m \) is a given floating point vector. Suppose that solution of (1) is obtained by solving
\[
A_1\tilde{y} = \tilde{b} \quad \text{and} \quad A_2\tilde{x} = \tilde{y}.
\]
Assume that the systems in (2) are solved using a backward stable method, that is, the computed \(\tilde{y} \) and computed \(\tilde{x} \) satisfy
\[
(A_1 + \delta A_1)\tilde{y} = \tilde{b}, \quad (A_2 + \delta A_2)\tilde{x} = \tilde{y},
\]
where \(\|\delta A_i\| \leq c(m)u\|A_i\| \), \(i = 1, 2 \), \(c(m) \) depends mildly on \(m \) (e.g., \(c(m) = m \)), \(u \) is the unit roundoff, and \(\| \cdot \| \) is some induced matrix norm. Determine condition on \(\|A_1\|\|A_2\| \) under which the described method of solving (1) can be viewed as being backward stable.

Problem 6. Assume that \(A \in \mathbb{R}^{m \times m} \) is symmetric and positive definite.

(a) Show that if \(X \in \mathbb{R}^{m \times m} \) is nonsingular, then \(X^TAX \) is symmetric and positive definite.

(b) Show that any principal submatrix of \(A \) is symmetric and positive definite. (A principal submatrix of \(A \) is the matrix \(A(j : k, j : k) \), where \(1 \leq j \leq k \leq m \).)