Math 782, HW 7, Due Wednesday, May 12

For problems involving MATLAB, turn in printouts of your m-files and obtained numerical results. Use format long e of MATLAB to display your results.

Problem 1. Let T be the $n \times n$ tridiagonal matrix with 2 on the main diagonal and -1 on the first superdiagonal and the first sub-diagonal. It is known that the eigenvalues and the corresponding orthonormal eigenvectors of T are given, respectively, by

$$
\lambda_j = 4 \sin^2 \frac{j\pi}{2(n+1)}, \quad j = 1, \ldots, n,
$$

$$
\tilde{q}_j = \sqrt{\frac{2}{n+1}} \left[\sin \frac{j\pi}{n+1}, \sin \frac{2j\pi}{n+1}, \sin \frac{3j\pi}{n+1}, \ldots, \sin \frac{n j\pi}{n+1} \right]^T, \quad j = 1, \ldots, n.
$$

For 6×6 matrix T and $j = 1, \ldots, 6$, use Matlab and one iteration of inverse iteration with the shift $\mu = \lambda_j$ to compute the corresponding orthonormal eigenvector of T. Use “rand” to select $\tilde{v}^{(0)}$ (remember to normalize it) and “\backslash” for the solution of the required linear system. For $j = 1, \ldots, 6$, compare each computed eigenvector \tilde{q}_j with the corresponding exact eigenvector \tilde{q}_j by printing horizontally \tilde{q}_j, \tilde{q}_j, and $\tilde{q}_j - (\pm \tilde{q}_j) \approx 0$. Comment on what you observe.

Problem 2. Let $A \in \mathbb{R}^{n \times m}$ be upper Hessenberg, that is, $a_{ij} = 0$ for $i > j + 1$. Assume that a QR step without shift is applied to A, that is,

$$
A = QR, \quad B = RQ,
$$

where QR in the first equation is a QR factorization of A. Describe the computation of R and B using Givens rotations. Show that B is upper Hessenberg and that cost of computing B is proportional to m^2.

Problem 3. (We showed in class that if Givens rotations are used at each step of the QR algorithm without shifts, then the symmetric tridiagonal form of a matrix is preserved. The purpose of this problem is to show that the symmetric tridiagonal form is preserved for an unreduced symmetric tridiagonal matrix regardless of how QR factorization is computed at each step of the QR algorithm.)

Definition. A symmetric tridiagonal $T \in \mathbb{R}^{n \times n}$ is unreduced if all its elements on the first subdiagonal (equivalently all elements on the first superdiagonal) are nonzero.

Assume that $T \in \mathbb{R}^{m \times m}$ is symmetric tridiagonal and unreduced and let $T = QR$ be a QR factorization of T, that is, $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times m}$ is real upper triangular.

(a) Show that the first $m-1$ columns of R are linearly independent. **Hint:** First show that the first $m-1$ columns of T are linearly independent.

(b) Let $\hat{T}, \hat{Q} \in \mathbb{R}^{m \times (m-1)}$ consist of the first $m-1$ columns of T and Q, respectively, and let $\hat{R} \in \mathbb{R}^{(m-1) \times (m-1)}$ be obtained from R by deleting its last column and last row. Show that \hat{R} is nonsingular and that $\hat{T} = \hat{Q}\hat{R}$. Using these facts prove that Q is upper Hessenberg.

(c) Show that RQ is tridiagonal. **Hint:** First show that RQ is upper Hessenberg and then use symmetry of RQ.

Problem 4. Use 6×6 matrix T of Problem 1 and Matlab with “[Q,R]=qr(X)” to:

(a) perform 50 iterations of the QR algorithm without shifts. Print (using, for example, “rem(k,10)”) $T^{(k)}$ for $k = 10, 20, 30, 40, 50$. Comment on the convergence of the diagonal elements of $T^{(k)}$ to the eigenvalues of T.

(b) perform 3 iterations of the QR algorithm with Wilkinson shifts. Print $T^{(k)}$ for $k = 1, 2, 3$ and comment on the convergence of $T^{(k)}_{6,6}$ to one of the eigenvalues of T.

Problem 5. Use matlab to perform 50 iterations of the QR algorithm without shifts on the Hessenberg matrices

$$
H = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 0 & 1 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 0 & -2 & 2 \end{bmatrix}.
$$

For each H, print $H^{(50)}$ and use it to determine the eigenvalues of H. Compare them with the eigenvalues of H obtained using matlab “eig”.