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This paper focuses on system identification of a small, flying-wing UAS using the frequency
response method. A flight test procedure is designed to address the unique challenges encountered
when conducting system identification for a small flying-wing UAS with elevon controls.
These challenges include increased susceptibility to atmospheric disturbances, limited yaw
maneuverability, and visual line-of-sight safety requirements. Frequency sweeps are used
as control inputs to excite the longitudinal and lateral-directional dynamics over a designed
frequency range. Reduced-order transfer functions are first identified to gain initial information
on key dynamics and to provide comparison with different models. Then, decoupled longitudinal
and lateral-directional state space models are identified from flight data. The models are
validated in the time-domain through comparison with doublet maneuver flight data, showing
an excellent fit between the dynamic models and flight data. Finally, nondimensional stability
and control derivatives and their confidence intervals are computed from the state space models
for comparison with other modeling methods.

Nomenclature

CG = center of gravity
ICR = instantaneous center of rotation
IMU = inertial measurement unit
RMS = root mean square
SIMO = single-input, multi-output
SISO = single-input, single-output
TIC = Theil inequality coefficient
𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 = body x-, y-, and z-axis accelerometer measurements
𝐶𝑅 = Cramér-Rao bound percentage
𝐷𝑅 = subscript for Dutch-roll mode
𝑔 = gravity constant
𝐼 = insensitivity percentage
𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 = moments of inertia
𝐽 = cost function value
𝐿, 𝑀, 𝑁 = roll, pitch, and yaw moment dimensional stability and control derivatives
𝑝, 𝑞, 𝑟 = perturbation roll, pitch, and yaw rates
𝑆𝑃 = subscript for short-period mode
𝑡 = time
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𝑇max = maximum dynamic period of interest
𝑇rec = frequency sweep flight record time
𝑇𝑠 = sampling time
𝑢, 𝑣, 𝑤 = perturbation x-, y-, and z-body axis velocities
𝑉𝑎0 ,Θ0,𝑈0,𝑊0 = trim airspeed, pitch angle, x- and z-body velocities
𝑋,𝑌, 𝑍 = longitudinal, lateral, and vertical force dimensional stability and control derivatives
𝛼, 𝛽 = angle of attack and angle of sideslip
𝛿𝑎, 𝛿𝑒 = aileron and elevator commands
𝛿elevonleft , 𝛿elevonright = left and right elevon deflection
Z, 𝜔𝑛 = damping coefficient and natural frequency
𝜏 = time delay
𝜙, \ = perturbation roll and pitch attitudes

I. Introduction

Unmanned aircraft systems (UAS) have become increasingly important platforms for the research and development
of next-generation autonomous aircraft, such as urban-air mobility vehicles or autonomous cargo delivery vehicles.

A significant step in the development of these UAS is the identification of dynamic models, which is critical to many
research applications such as controller design, state estimator design, turbulence impact analysis, and handling quality
analysis.
Many modeling techniques have been developed for manned and unmanned aircraft. Physics-based models can be

developed using computational methods or wind-tunnel data, while flight test-based models can be developed through
system identification techniques. These techniques include time domain- and frequency domain-based methods, which
have been studied extensively in the literature for manned aircraft [1–3]. However, small UAS pose unique challenges in
system identification due to their relatively low speed, small size, light weight, and often-uncommon configurations,
such as the rudderless flying-wing configuration used in this paper. Yet, flying-wing UAS can also serve as an ideal
platform for development, comparison, and validation of different modeling techniques due to their simple aerodynamic
shape. As such, it is important to develop a system identification procedure that is tailored to small flying-wing UAS.
Several researchers have worked on the problem of small UAS system identification. Linear dynamic models for

conventional, fixed-wing UAS with standard, low-cost sensors were identified in [4–6], following the frequency response
method outlined in [1]. On board parameter identification of a fixed-wing UAS was performed in [7]. Nonlinear models
were identified using time-domain methods in [8–10]. Lateral-directional dynamic models for a flying-wing UAS
were identified in [11, 12]. A tailless UAS with conventional rudders located on two vertical stabilizers was used for
system identification in [13]. In [14], a two-step system identification procedure was developed for a small, low-cost,
flying-wing UAS using exclusively gyro measurements, focusing on identification of uncertain lateral-directional
parameters. In summary, few small UAS dynamic models can be found in the literature that are identified from flight
data, especially for a flying-wing UAS with only elevon controls. Identified UAS models that accurately describe the
longitudinal and lateral-directional dynamics will be useful for research in many areas such as aerodynamic modeling
or controller design. Additionally, due to the unique challenges posed by small UAS and a lack of detailed system
identification procedures, performing in-house system identification can be difficult. This points to the need for an
easily repeatable procedure tailored to these challenges.
In this paper, a flight data collection and system identification procedure was developed using the frequency

response method [1] to address the unique challenges of performing system identification with a small flying-wing
UAS. Recommendations for flight test design are made based on our experience. Reduced-order transfer function
models and state space models were identified for the KHawk Zephyr3-R UAS. Transfer functions were identified to
provide initial parameter estimates and further verification of the identified state space models. Decoupled longitudinal
and lateral-directional state space models were identified and verified using time-domain data acquired from doublet
maneuvers. Nondimensional stability and control derivatives and associated confidence intervals were computed from
the identified state space models for comparison with other modeling methods.
This paper is organized as follows. Section II presents the KHawk UAS research platform and describes the dynamic

model structures used for identification. Section III describes the UAS system identification method used in this paper,
including flight test design, control input design, and a review of the frequency response method for UAS model
identification. Longitudinal and lateral-directional model identification results are presented in Section IV. Section V
provides concluding remarks and future directions.
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II. UAS Platform and Dynamic Models

A. Flying-wing UAS Platform
The system identification procedure was performed using the KHawk Zephyr3-R UAS, which was developed at the

Cooperative Unmanned Systems Laboratory (CUSL) at the University of Kansas. The Zephyr3-R, shown in Fig. 1, is a
flying-wing UAS with two elevons and an electric motor as control inputs. The elevons are controlled by mixing the
aileron and elevator commands generated by a human pilot or autopilot via Eqs. (1-2), where a positive value indicates
deflection of the trailing edge downward.

𝛿elevonleft = 0.5(𝛿𝑒 + 𝛿𝑎) (1)

𝛿elevonright = 0.5(𝛿𝑒 − 𝛿𝑎) (2)

The UAS is controlled by a Hex Cube Pixhawk autopilot running ArduPilot open-source firmware. The Hex Cube
contains three redundant, internal inertial measurement units (IMUs) and interfaces with peripheral devices for sensing,
command-generation, telemetry, and data logging. A GPS receiver and airspeed sensor provide position, inertial
velocity, and airspeed measurement. IMU and command signal data was used for system identification and recorded at
100 Hz. Specifications of the KHawk Zephyr3-R are shown in Table 1.

Fig. 1 KHawk Zephyr3-R UAS.

Table 1 Khawk Zephyr3-R UAS specifications.

Mass (kg) Wingspan (cm) Cruise Speed (m/s) Mean Aerodynamic Chord (cm) Wing Area (m2)
2.18 122 15-17 31 0.413

B. Aircraft Dynamics
Aircraft dynamics can be described using different dynamic models, including linear single-input, single-output

(SISO) models, linear single-input, multi-output (SIMO) models, or nonlinear models. Linearized models are identified
in this paper as they provide an accurate representation of UAS dynamics around the trim condition and allow for
frequency-domain based analysis. Longitudinal and lateral-directional dynamics are assumed to be decoupled, as is
common with fixed-wing aircraft, and identified separately. This section outlines the dynamic models used for system
identification.

1. Linear Longitudinal Aircraft Dynamics
The longitudinal aircraft dynamics can be written in state space form, representing a single-input, multi-output

(SIMO) model linearized around the trim condition [1]:
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𝛿𝑒 (𝑡 − 𝜏𝛿𝑒 ) (3)

where 𝑢 and 𝑤 are the x-axis and z-axis body velocities, 𝑞 is the pitch rate, \ is the pitch angle, and 𝛿𝑒 is the elevator
command. All states and controls are perturbation values. 𝑈0,𝑊0, and Θ0 are the trim x-axis and z-axis body velocities
and trim pitch angle, 𝑔 is the gravity constant, and 𝜏𝛿𝑒 is the system time delay for elevator inputs. The 𝑋, 𝑍, and 𝑀
terms are the longitudinal dimensional stability and control derivatives to be identified.
Additionally, single-input, single-output (SISO) transfer functions can be used to model the longitudinal dynamics.

Simplified, second order transfer functions that describe the 𝑞/𝛿𝑒, 𝑎𝑧/𝛿𝑒, and 𝛼/𝛿𝑒 responses are shown in Eqs. (4-6),
where 𝛼 is the angle of attack (AOA) [15]. When no AOA measurement is available, as is commonly the case for small,
low-cost UAS, the response can be modeled from the reconstructed ¤𝑤 measurement.
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where ZSP and 𝜔𝑛SP are the short-period damping and natural frequency.
The SISO models in Eqs. (4-6) omit the phugoid mode dynamics, representing just the short-period mode. As will

be discussed in Section III.B.2, Eqs. (4) and (5) often result in errors when estimating the short-period dynamics, and
thus the identification procedure must be adapted to prevent these errors. The identified parameters of the SISO models
can be used as initial guesses during state space model identification, which can simplify the identification process and
provide further verification of the results.

2. Linear Lateral-Directional Aircraft Dynamics
The lateral-directional aircraft dynamics can also be written in state space form, representing a SIMO model

linearized around the trim condition [1]:
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where 𝑣 is the y-axis body velocity, 𝑝 and 𝑟 are the roll and yaw rates, 𝜙 is the roll angle, 𝛿𝑎 is the aileron command,
and 𝜏𝛿𝑎 is the system time delay for aileron inputs. All states and controls are perturbation values. The 𝑌, 𝐿, and 𝑁
terms are the lateral-directional dimensional stability and control derivatives to be identified.
Transfer function models can also be used to model the lateral-directional aircraft dynamics. The simplest models

assume that the lateral and directional dynamics are decoupled, and are thus reduced to low-order models.
The roll mode is the primary response to aileron, and can be modeled as a first-order transfer function [1]:

𝑝

𝛿𝑎
(𝑠) =

𝐿 𝛿𝑎

𝑠 − 𝐿𝑝

𝑒−𝜏𝛿𝑎 𝑠 (8)

The Dutch-roll mode can be identified from the sideslip response, 𝛽, which can be modeled from the reconstructed
¤𝑣 signal [1]:

𝛽

𝛿𝑎
(𝑠) ≈ 1

𝑠𝑈0

¤𝑣
𝛿𝑎

=
𝐾𝛽𝛿𝑎

𝑠2 + 2ZDR𝜔𝑛DR 𝑠 + 𝜔2
𝑛DR

𝑒−𝜏𝛿𝑎 𝑠 (9)

where ZDR and 𝜔𝑛DR are the Dutch-roll damping and natural frequency.
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These models are simplifications that decouple the lateral and directional controls and dynamics. Furthermore, the
sideslip response is usually identified from rudder commands, rather than aileron commands, which causes additional
error in the simplification. However, the reduced-order models allow for initial identification of the Dutch-roll mode,
roll damping, and roll control gain, which are critical descriptors of the lateral-directional dynamics. These initial
estimates will simplify the SIMO identification process and provide useful comparison.

III. Frequency Response Method for UAS System Identification
The objective of the UAS system identification procedure is to determine the model parameters outlined in Section

II.B. These models can then be used to design control laws and state estimators. The frequency response method for
system identification detailed in [1] is used in this paper. This section outlines the utilization of this method to address
the challenges of rudderless flying-wing UAS system identification. This includes control input design, flight procedure
design, and a review of the frequency response method.

A. Flight Test Design
Small flying-wing UAS pose unique challenges when designing flight test procedures for system identification.

Many of these challenges do not need to be considered for large UAS or manned aircraft, including:
1) Low stability margin for open loop aircraft dynamics due to small flying-wing configuration;
2) Significant impact from wind and atmospheric turbulence due to small size and light weight, which causes
disturbances to the aircraft response and makes it difficult to fly at consistent trim conditions

3) Elevon control surfaces lead to increased coupling between the roll and pitch response;
4) No direct yaw control available through elevons;
5) Visual line-of-sight safety requirements which limit the maximum length of system identification maneuvers.

1. Frequency Sweep Design
An important step of the flight test design is determination of the input signal. Input signals should excite the

aircraft response uniformly over the desired range of frequencies. In this paper, frequency sweep inputs are used. Key
parameters for frequency sweep design include the frequency range, signal magnitude, and record length. For a UAS,
these parameters may need to be adjusted for each day or even each flight based on the atmospheric conditions. The
frequency range should be selected to excite all rigid body mode frequencies of interest for the UAS. The control signal
magnitude, 𝐴, should be designed to provide ample signal-to-noise ratio (SNR) without causing responses that depart
far from the trim condition. A good rule of thumb is to design the magnitude such that measurements have a SNR
greater than three and attitude angles maintain ±10 deg from the trim condition [1]. For a small UAS, we found that
attitude variations closer to ±20-25 deg were required for ample SNR and still produced accurate results. Record length,
𝑇rec, is directly related to the maximum period, 𝑇max, and thus the minimum frequency, that can be identified. Practically,
for a small UAS, the record length is recommended to be as long as the pilot can maintain visibility of the aircraft in
straight and level flight, as the recommended guideline shown in Eq. (10) [1] cannot always be met. Because of this,
low-frequency dynamics may need to be identified using other methods, such as identification from trim data [16].

𝑇rec ≥ (4 to 5) 𝑇max (10)

Automated frequency sweeps inputs were programmed in to the autopilot. A discrete-time, exponential frequency
sweep is generated by Eqs. (11-14) [1].

𝛿sweep [𝑘] = 𝐴 sin(\sweep [𝑘]) (11)

\sweep [𝑘] = \sweep [𝑘 − 1] + 𝜔sweep𝑇𝑠 (12)

𝜔sweep = 𝜔sweepmin + 𝐾 (𝜔sweepmax − 𝜔sweepmin ) (13)

𝐾 = 0.0187𝑒4𝑡/𝑇rec (14)

where 𝐴 is the signal amplitude, 𝑇𝑠 is the sampling time, 𝑇rec is the total sweep length, 𝜔sweepmin and 𝜔sweepmax are the
selected minimum and maximum frequencies, 𝑡 is the current time, and 𝑘 is the time step index.
The average frequency sweep parameters designed for system identification are shown in Table 2. The frequency

range was selected to ensure accurate identification of the key dynamic modes, which can be estimated a priori based on
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existing flight data, literature on similar aircraft, or simplified modeling methods. The first period of the sweep was held
at constant frequency and the magnitude was faded in to prevent too large of variation in the attitude angle. White noise
with a root-mean-square (RMS) level of 10% of the input magnitude was added to the sweep to enrich the spectral
content. To suppress high-frequency content, the added white noise should be processed with a low-pass filter with
cutoff frequency equal to 𝜔sweepmax [1]. The following discrete-time low-pass filter was implemented [17]:

𝑦LP [𝑘] = 𝛼LP𝑦LP [𝑘 − 1] + (1 − 𝛼LP)𝑢𝐿𝑃 [𝑘 − 1] (15)

where
𝛼LP = 𝑒

−𝑎LP𝑇𝑠 , (16)
𝑎LP is the filter cutoff frequency, 𝑇𝑠 is the sampling time, and 𝑢LP and 𝑦LP are the filter input and output.

Table 2 Average frequency sweep design parameters.

Control Record Length (s) Frequency Range (Hz) Input Magnitude (deg)
𝛿𝑒 23 0.5-7 3.0
𝛿𝑎 23 0.4-5 2.5-3.5

During automated sweep maneuvers, manual pilot intervention may be required to keep the response near the trim
condition, especially at low frequencies. Experimentally, we found that automated sweeps allow the pilot to better focus
on keeping the aircraft near the trim condition. Additionally, automated sweeps can be programmed to have different
user-configurable settings that can be adjusted during the flight test based on the UAS response. For example, the aileron
sweep shown in Figure 2 was programmed to have a smaller magnitude at lower frequencies but a larger magnitude
at higher frequencies where the yaw and lateral acceleration responses were heavily attenuated. As such, automated
sweeps with the option for additive pilot intervention to help keep the UAS around the trim condition were used for all
system identification maneuvers.

0 4 8 12 16 20

Time (s)

-5

0

5

Fig. 2 Automated aileron frequency sweep. The pilot adds corrective inputs around 8s and 16s.

In addition to frequency sweeps, dissimilar inputs should be used for time-domain verification of the identified
models to ensure that the model is not over-fitted to the frequency sweep data. In this paper, doublet maneuvers are used
for time-domain verification.

2. Flight Test Procedure
The flight test procedure consists of collecting data for frequency-domain system identification and time-domain

verification. Many considerations need to be taken during the flight test. Due to the volatility of small UAS to
atmospheric turbulence, flight test pilots and engineers should be prepared to adjust the procedure based on observations
in the field. Frequency sweep parameters such as record length and input magnitude can vary greatly depending on the
visibility and turbulence at the time of flight test. Ideally, flight tests should be performed on calm days.
The following recommendations are made based on those listed in [1] and our flight test experience with small,

flying-wing UAS.
• Attempt to maintain trimmed straight and level flight for several seconds before and after the sweep maneuver.
This allows for identification of trim parameters and should also be done when performing doublet maneuvers.

• Relaying airspeed and pitch angle information to the pilot via real-time telemetry can help ensure the UAS is
operating near the same trim point for all system identification maneuvers, which will lead to a model with
improved accuracy. Experimentally, we found that airspeed variation of about ± 2 m/s and roll/pitch variation of
about ± 20-25 degrees was sufficient for identifying a highly accurate model.
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• The control input magnitude should be adjusted to keep the UAS response symmetric and near the trim point. For
automated sweeps, the pilot can intervene if the UAS begins to drift from the trim point.

• The pilot can also maintain the off-axis states at the trim condition, preferably with short, pulsed inputs. For
example, during elevator sweeps the aileron should be adjusted to keep the roll angle near zero. For a small UAS,
this can be a significant task that is easier to perform during automated sweeps when the pilot does not also have
to perform the sweep maneuvers themselves.

• The use of highly-coupled inputs can hinder the system identification process. For a flying-wing UAS, minimizing
the number of off-axis inputs required to keep the aircraft at trim will increase the data quality, due to the increased
coupling between roll and pitch. Experimentally, we found that engaging the off-axis controller during frequency
sweeps resulted in comparatively lower quality data.

• Frequency sweep parameters are suggested to be adjusted based on monitored telemetry data. For example, the
sweep magnitude could be adjusted if the SNR of a response was too small. As mentioned, the ideal parameters
may change depending on the atmospheric conditions at the time of flight test.

• Flying with a headwind during all maneuvers can improve consistency in trim conditions and allow for an increased
record time.

B. UAS Model Identification

1. System Identification using CIFER® Software Package
After flight data was collected, the system identification process was performed using CIFER® (Comprehensive

Identification from Frequency Responses), a commercial software package developed by the U.S. Army Aviation
Development Directorate [1]. CIFER® consists of several modules that are used for different steps of the system
identification process. The FRESPID and COMPOSITE modules are used to estimate SISO frequency responses from
flight test data. Estimates are optimized across multiple spectral windows, which decreases random error. NAVFIT is
used to fit SISO transfer function models to the estimated frequency responses and identify key parameters that are used
as initial guesses when performing state space model identification with the DERIVID model. Lastly, VERIFY is used
to validate the state space model in the time domain.
An important feature of the frequency domain method is the presence of several accuracy metrics. The coherence

function, 𝛾2
𝑥𝑦 , provides an estimate of the accuracy of the non-parametric frequency responses identified in FRESPID

and COMPOSITE. Coherence is defined at each discrete frequency by [1]

𝛾2
𝑥𝑦 =

|�̂�2
𝑥𝑦 |

|�̂�𝑥𝑥 | |�̂�𝑦𝑦 |
(17)

where �̂�𝑥𝑥 , �̂�𝑦𝑦 , �̂�𝑥𝑦 , are the estimated input, output, and cross spectrums computed using chirp z-transforms.
Coherence ranges from zero to one and measures the linear relationship between the input and output signals in

the frequency domain. Typically, a coherence above 0.6 indicates the response at that frequency will have acceptable
accuracy. When fitting models to the flight data, a "fitting range" of frequencies should be selected such that the
coherence within the range is above 0.5. Within this range, narrow coherence dips are not of concern, as they can be
avoided by adjusting the distribution of discrete frequency points. Data at frequencies outside the fitting range will be
neglected. Additionally, if any fitting range has a ratio between the maximum and minimum frequencies less than two,
the response should not be used in the system identification process [1].
In NAVFIT and DERIVID, parametric models are identified by minimizing the magnitude and phase error between

the model and estimated frequency response using a quadratic cost function, 𝐽, that is weighted by the coherence at each
frequency. The cost function serves as the primary accuracy metric of the identified models. For state space model
identification, an average cost value below 100 indicates an accurate model, and an average cost value below 50 reflects
a model that is nearly indistinguishable from flight data [1].
Multi-output identification has additional metrics in the Cramér-Rao bound percentage, 𝐶𝑅, and insensitivity

percentage, 𝐼. Cramér-Rao bounds measure the level of confidence in the accuracy of an identified parameter, and
are scaled by a factor of 2 in CIFER® to more accurately reflect the standard deviation of the parameter [1]. High
insensitivity indicates that changes in a parameter has little to no effect on the cost function. For accurately identified
parameters, a general guideline using these metrics is [1]:

𝐶𝑅𝑖 ≤ 20% (18)
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𝐼𝑖 ≤ 10% (19)

These guidelines are an important part of the model reduction process, which may be necessary to prevent
over-parametrized models that result in poor predictive accuracy. In this paper, the iterative reduction process described
in [1] was followed, where parameters are dropped, or set to zero, if they do not meet the criteria of Eqs. (18-19) and
dropping the term does not result in an excessive increase to the cost functions.
The last step of the system identification procedure is verification of the state space model in the time domain. The

VERIFY module is used to compare the model with flight data, while removing biases and references in the data to
produce a one-to-one comparison. Doublet maneuvers were collected and used for time domain verification. Theil’s
inequality coefficient (TIC) is used to represent the overall fit. TIC quantifies the average RMS error as a ratio of the
RMS values of the signals. Thus, TIC ranges from 0 to 1, with 0 indicating a perfect fit. A general rule of thumb is that
a TIC below 0.25 to 0.30 indicates an accurate fit [1].

2. Transfer Function Models
SISO transfer functions can be identified prior to performing state space model identification as a "sanity check" of

critical model parameters. The simplified transfer functions shown in Eqs. (4-6, 8-9) are useful for this purpose.
The short-period assumption made to derive Eqs. (4-5) leads to errors when identifying the short-period dynamics

and numerator parameters. Specifically, 𝑍𝑤 in Eq. (4) tends to drift away from its true value, and the 𝑎𝑧/𝛿𝑒 model is
only accurate when the accelerometer measurement is aligned with, or corrected to, the instantaneous center of rotation
(ICR) [1]. The latter is particularly problematic for a flying-wing configuration, as the distance between the ICR and
accelerometer measurement (located at the CG) will be large due to the short elevon moment arm.
To account for these errors, the 𝑞/𝛿𝑒 and 𝑎𝑧/𝛿𝑒 response can be fit simultaneously, ensuring that the denominator,

or short-period mode, is equivalent for both. This capability is supported in CIFER®. Alternatively, identification of the
𝛼/𝛿𝑒 transfer function in Eq. (6) should provide accurate identification of the short-period dynamics. However, the zero
in the numerator of 𝛼/𝛿𝑒 may be above the frequencies that can be identified accurately, resulting in high cost. As such,
the zero was neglected, and 𝛼/𝛿𝑒 was identified using a standard second order transfer function of the form in Eq. (20).

𝛼

𝛿𝑒
=

1
𝑈0

𝐾𝛼𝛿𝑒

𝑠2 + 2ZSP𝜔𝑛SP 𝑠 + 𝜔2
𝑛SP

𝑒−𝜏𝛿𝑒 𝑠 (20)

Approximations can be made to relate the short-period frequency to state space model parameters [18]:

𝜔2
𝑛SP

≈
𝑍𝛼𝑀𝑞

𝑈0
− 𝑀𝛼 (21)

Typically, 𝑀𝛼 ≫ 𝑍𝛼𝑀𝑞/𝑈0. Thus,
𝜔2
𝑛SP

≈ −𝑀𝛼 ≈ −𝑀𝑤𝑈0 (22)

A similar approximation can be made with the Dutch-roll frequency [18]:

𝜔2
𝑛DR

≈ 𝑁𝛽 +
𝑌𝛽𝑁𝑟 − 𝑁𝛽𝑌𝑟

𝑈0
(23)

𝜔2
𝑛DR

≈ 𝑁𝛽 ≈ 𝑁𝑣𝑈0 (24)

Identification of these SISO models, and subsequent parameters, can provide reasonable initial guesses during
SIMO identification, which reduces the efforts required. Additionally, comparison between SISO- and SIMO-identified
parameters provides a simple and useful verification step.

3. State Space Models
The general SIMO system setup comprises of the equations of motion written in matrix form:

𝑴 ¤𝒙 = 𝑭𝒙 + 𝑮𝒖 (25)

where 𝒙 and 𝒖 are the system states and controls and 𝑴, 𝑭, 𝑮 are the inertial and augmented state space matrices. The
measurements, or outputs, 𝒚, can then be expressed in matrix form as a function of the system states:

𝒚 = 𝑯0𝒙 + 𝑯1 ¤𝒙 (26)
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The form of Eqs. (25-26) is convenient because it allows for the separation of mass matrix terms and simple
formulation of accelerometer equations. The equations can also be expressed in standard state space form [1]:

¤𝒙 = 𝑨𝒙 + 𝑩𝒖 (27)

𝒚 = 𝑪𝒙 + 𝑫𝒖 (28)

where 𝑨 = 𝑴−1𝑭, 𝑩 = 𝑴−1𝑮, 𝑪 = 𝑯0 + 𝑯1𝑴
−1𝑭, and 𝑫 = 𝑯1𝑴

−1𝑮.
The outputs used for longitudinal and lateral-directional model identification are (𝑎𝑥 , 𝑎𝑧 , 𝑞, ¤𝑢, ¤𝑤) and (𝑎𝑦 , 𝑝, 𝑟, ¤𝑣),

where (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) are the body x-, y-, and z-axis accelerometer measurements recorded by the IMU. The perturbation
velocity derivatives, ( ¤𝑢, ¤𝑣, ¤𝑤), are reconstructed from other measurements. Note that it is necessary to check the
kinematic consistency of the attitude angle measurements prior to reconstructing these signals, as described in [1].

¤𝑢 = 𝑎𝑥 −𝑊0𝑞 − (𝑔 cosΘ0)\ (29)

¤𝑣 = 𝑎𝑦 −𝑈0𝑟 +𝑊0𝑝 + (𝑔 cosΘ0)𝜙 (30)

¤𝑤 = 𝑎𝑧 +𝑈0𝑞 − (𝑔 sinΘ0)\ (31)

The output equations for the longitudinal and lateral-directional systems can then be written as

𝑎𝑥

𝑎𝑧

𝑞

¤𝑢
¤𝑤


=



0 0 𝑊0 𝑔 cosΘ0

0 0 −𝑈0 𝑔 sinΘ0

0 0 1 0
0 0 0 0
0 0 0 0




𝑢

𝑤

𝑞

\


+



1 0 𝑧IMU 0
0 1 −𝑥IMU 0
0 0 0 0
1 0 𝑧IMU 0
0 1 −𝑥IMU 0




¤𝑢
¤𝑤
¤𝑞
¤\


(32)


𝑎𝑦

𝑝

𝑟

¤𝑣


=


0 −𝑊0 𝑈0 −𝑔 cosΘ0

0 1 0 0
0 0 1 0
0 0 0 0



𝑣

𝑝

𝑟

𝜙


+


1 −𝑧IMU 𝑥IMU 0
0 0 0 0
0 0 0 0
1 −𝑧IMU 𝑥IMU 0



¤𝑣
¤𝑝
¤𝑟
¤𝜙


(33)

where 𝑥IMU and 𝑧IMU are the positional offsets between the CG of the UAS and the IMU, which is located within the
UAS autopilot. For the UAS used in this paper, this offset is approximated to be zero.

IV. UAS System Identification Results
This section presents theUAS system identification results. Non-parametricmodels were generated from concatenated

flight data using CIFER®, then fit to reduced-order transfer function and state space models. Doublet maneuvers
were used for time-domain verification, as they provide insight to the model’s ability to predict the response of inputs
dissimilar to those used for identification.
Steady state conditions were identified by averaging themeasurements of data prior to and during system identification

maneuvers. For a small UAS, trim conditions can vary significantly, which presents a nontrivial challenge during flight
tests. Ensuring that each data set used for identification was performed near the same trim condition will improve the
accuracy of the identified models. As a reference, the flight data used for system identification in this paper varied from
the trim airspeed by ±2 m/s on average and still produced accurate results. The steady state conditions for the KHawk
Zephyr3-R are shown in Table 3. The small difference in trim conditions between the two models is likely a result of
flight data collected at different wind conditions on different days. Ideally, each model would be identified at the same
trim condition.

Table 3 Zephyr3-R steady state conditions.

Model 𝑼0 (m/s) 𝚯0 (deg) 𝑾0 (m/s)
Longitudinal 17 3 0.9

Lateral-directional 15 5 1.3

9



A. Longitudinal Model Identification
The longitudinal model was acquired from four frequency sweep data sets that were selected based on the desired

data specifications discussed in Section III.A. The time-history data of one sweep is shown in Fig. 3. The primary
responses have ample SNR for the majority of the maneuver. The aileron history shows the pilot’s corrective inputs to
attempt to maintain the roll angle at zero. During the maneuver, the roll and pitch angles stays within ±20 degrees and
the airspeed varies within ±2 m/s, which was also found to be sufficient for accurate results.
Frequency responses for the longitudinal outputs and the reconstructed AOA signal were computed, and are shown

in Fig. 4. Prior to SIMO identification, the transfer functions in Eqs. (4-5, 20) were identified to provide initial insight
into the longitudinal dynamics, which are also depicted in Fig. 4. The parameter identification results are shown in
Table 4. Corresponding state space model results, which will be discussed in the following, are included for comparison.
The 𝑞/𝛿𝑒 and 𝑎𝑧/𝛿𝑒 transfer functions were fit simultaneously to prevent error in the identification. Each of the transfer
functions fit the flight data accurately, as indicated by the low cost function values. The transfer function parameters
match closely with the state space model results, providing initial estimates for the state space identification process and
a useful "sanity check" of the results. There is a large error in the 𝑀𝑤 estimate, which is caused by the approximation
that 𝑀𝛼 ≫ 𝑍𝛼𝑀𝑞/𝑈0 used to derive Eq. (22), which is less accurate for a small UAS as 𝑈0 is small. This can be
verified using state space parameters to calculate 𝜔𝑛SP with Eqs. (21-22) and comparing the results.
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Fig. 3 Time history data of elevator sweep.

Table 4 Longitudinal transfer function parameters.

Parameter Unit 𝒒/𝜹𝒆 and 𝒂𝒛/𝜹𝒆
(Simultaneous Fit) 𝜶/𝜹𝒆

State Space
Model

Percent
Difference (%)

𝜔𝑛SP rad/s 8.26 7.99 8.15 1.4, 2.0
ZSP - 0.70 0.70 0.66 6.1, 6.1
𝜏𝛿𝑒 s 0.063 0.050 0.060 5.0, 17
𝑀𝛿𝑒 s-2 -106 - -101 5.0
𝑍𝑤 s-1 -7.37 - -7.55 2.4
𝑀𝑤 (m s)-1 -4.26 -4.18 -2.47 72, 69

Cost - 𝐽𝑞 = 11.9,
𝐽𝑎𝑧

= 22.6 5.4 𝐽𝑞 = 11.4,
𝐽𝑎𝑧

= 23.0 -

10



0

50
M

ag
n
it

u
d
e 

(d
B

)

-200

-100

0

P
h
as

e 
(d

eg
)

10
0

10
1

Frequency (rad/s)

0

0.5

1

C
o
h
er

en
ce

(a) Derivative of x-axis body velocity fre-
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(b) Derivative of z-axis body velocity fre-
quency response.
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(c) Longitudinal acceleration frequency re-
sponse.
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(d) Pitch rate frequency response and transfer
function fit (𝐽𝑞 = 11.9).

30
35
40
45

M
ag

n
it

u
d
e 

(d
B

)

-200

-100

0

P
h
as

e 
(d

eg
)

Flight data

TF Model

10
0

10
1

Frequency (rad/s)

0

0.5

1

C
o
h
er

en
ce

(e) Vertical acceleration frequency response
and transfer function fit (𝐽𝑎𝑧 = 22.6).
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tion fit. approximated from ¤𝑤 (𝐽 ¤𝑤 = 5.4).

Fig. 4 Longitudinal frequency responses and transfer function fits.

Table 5 Longitudinal state space model identification results.

Parameter Unit Value Cramér-Rao % Insensitivity % Response Cost Value
𝑋𝑢 s-1 -0.2776 40.9 14.8 𝑎𝑥/𝛿𝑒 3.4
𝑋𝑤 s-1 0.6201 8.2 1.4 𝑎𝑧/𝛿𝑒 23.0
𝑋𝑞 m/s -0.3484 25.1 5.0 𝑞/𝛿𝑒 11.4
𝑍𝑤 s-1 -7.554 5.6 1.4 ¤𝑢/𝛿𝑒 23.0
𝑀𝑤 (m s)-1 -2.465 10.3 1.9 ¤𝑤/𝛿𝑒 8.6
𝑀𝑞 s-1 -3.252 22.1 2.7 Average 13.9
𝑍𝛿𝑒 m/s2 -21.77 27.5 9.2 𝑍𝑞 , 𝑋𝛿𝑒 , 𝑀𝑢, and 𝑍𝑢 were

dropped during model
identification

𝑀𝛿𝑒 s-2 -100.9 4.9 1.0
𝜏𝛿𝑎 s 0.06044 4.2 1.7

Next, SIMO model identification was performed. As discussed, fitting ranges for each transfer function were
selected based on a coherence threshold of 0.5. The identified parameters are shown in Table 5. Several parameters
were dropped following the iterative process detailed prior, and, as such, the phugoid dynamics are not fully identified.
Both the overall and individual cost functions indicate an excellent fit, with all values less than 25. The 𝑋𝑢 term has
poor accuracy metrics, but was not dropped as it has a significant impact on the 𝑎𝑥 and ¤𝑢 models. All other parameters
meet insensitivity guidelines, and just two other parameters, 𝑀𝑞 and 𝑍𝛿𝑒 , exceed the Cramér-Rao guideline, though not
significantly. The identification results are compared to the frequency responses from flight data in Fig. 5.
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(a) Z-axis body velocity derivative model fit
(𝐽 ¤𝑤 = 8.6).
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(b) Pitch rate model fit (𝐽𝑞 = 11.4).
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(c) Vertical acceleration model fit (𝐽𝑎𝑧 = 23.0).
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(d) X-axis body velocity derivative model fit
(𝐽 ¤𝑢 = 23.0).
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(e) Longitudinal acceleration model fit (𝐽𝑎𝑥 =

3.4).

Fig. 5 Longitudinal state space model fit (𝑱 = 13.9)
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Fig. 6 Time-domain comparison between longitudinal model and flight test data (TIC = 0.09).
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The model was validated using time-domain data collected during an elevator doublet maneuver, which is shown in
Fig. 6. The model predicts the response very accurately, and much of the error can be attributed to the presence of noise
and disturbances in the flight data. The 𝑎𝑥 response is the least accurate, which can likely be attributed to the many
related parameters that were dropped. The TIC for this fit is 0.09, which indicates a model with high predictive accuracy.

B. Lateral-Directional Model Identification
The lateral-directional model was identified from three frequency sweep data sets. The time-history data of one

sweep is shown in Fig. 7. The main challenge when performing aileron sweep maneuvers was ensuring the directional
responses have ample SNR across a wide range of frequencies, as the Zephyr3-R has no direct yaw control. The 𝑟, 𝑎𝑦 ,
and ¤𝑣 responses can be clouded by the lightly damped Dutch-roll mode, which is easily excited by even very light wind.
This can lead to poor coherence in the frequency responses. This effect can be seen at the very end of the flight record
shown in Fig. 7. Generally, we found the best way to combat this is by increasing the magnitude of the aileron input or
flying on a calmer day, each of which will serve to improve the SNR. However, it should also be considered that large
aileron inputs will result in large roll rates and angles, which could also reduce the identification accuracy if the aircraft
departs excessively from the trim point. Thus, it is important to find a good trade-off between SNR and operation near
the trim condition.
Lateral-directional frequency response estimates are shown in Fig. 8. The responses have acceptable coherence over

a wide range of frequencies. The directional responses all exhibit a dip in coherence near the Dutch-roll frequency.
This is likely caused by the wind exciting the Dutch-roll mode during flight, which reduces the SNR of the directional
response. This will have an increased impact on the identification process when there are not rudder inputs, which
will typically better excite the Dutch-roll mode. Nonetheless, the coherence drop spans a narrow frequency range and
reaches a minimum value of 0.5, and thus did not hinder the identification results significantly.
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Fig. 7 Aileron sweep time history data.

Table 6 Lateral-directional transfer function parameters.

Parameter Unit 𝒑/𝜹𝒂 𝜷/𝜹𝒂 State Space Model Percent Difference (%)
𝜔𝑛DR rad/s - 3.48 3.98 13
ZDR - - 0.30 0.31 3.2
𝜏𝛿𝑎 s 0.063 0.065 0.055 15, 18
𝑁𝑣 (m s)-1 - 0.805 0.835 3.6
𝐿 𝛿𝑎 s-2 186 - 170 10
𝐿𝑝 s-1 -11.0 - -8.52 29

Cost - 24.0 59.4 𝐽𝑝 = 11.7
𝐽 ¤𝑣 = 27.3 -
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Also shown in Fig. 8 are the low-order transfer functions that were fit to the aileron-to-roll-rate and aileron-to-sideslip
responses. As with the longitudinal model, these transfer functions provide useful information on dynamic modes and
key parameters that simplify the state space model identification process. The parameter identification results are shown
in Table 6. Corresponding state space model results, which will be discussed following, are included for comparison.
The cost functions indicate accurate models, and the identified parameters match well with the state space model.
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(a) Derivative of y-axis body velocity fre-
quency response.
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(b) Yaw rate velocity frequency response.
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(c) Lateral acceleration frequency response.

10

20

M
ag

n
it

u
d

e 
(d

B
)

-200

-100

0

P
h

as
e 

(d
eg

)

Flight data

TF Model

10
0

10
1

Frequency (rad/s)

0

0.5

1

C
o
h

er
en

ce

(d) Roll rate frequency response and transfer
function fit (𝐽𝑝 = 24.0).
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(e) Sideslip frequency response and transfer
function fit (𝐽𝛽 = 59.4).

Fig. 8 Lateral-directional frequency responses and transfer function fits.

Table 7 Lateral-directional state space model identification results.

Parameter Unit Value Cramér-Rao % Insensitivity % Response Cost Value
𝑌𝑣 s-1 -0.6819 6.3 2.6 ¤𝑣/𝛿𝑎 27.3
𝑌𝑝 m/s 0.1647 22.7 9.8 𝑝/𝛿𝑎 11.7
𝑌𝑟 m/s 0.5972 33.5 13.4 𝑟/𝛿𝑎 29.6
𝐿𝑣 (m s)-1 -0.8599 29.2 8.7 𝑎𝑦/𝛿𝑎 17.1
𝐿𝑝 s-1 -8.517 8.8 1.5 Average 21.4
𝐿𝑟 s-1 3.144 34.7 9.8

𝑌𝛿𝑎 and 𝑁𝛿𝑎 were dropped
during model identification

𝑁𝑣 (m s)-1 0.8346 5.5 1.6
𝑁𝑝 s-1 -0.7113 9.0 2.5
𝑁𝑟 s-1 -1.465 13.9 4.0
𝐿 𝛿𝑎 s-2 169.7 5.6 1.1
𝜏𝛿𝑒 s 0.05486 5.7 2.1
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(a) Y-axis body velocity derivativemodel fit (𝐽 ¤𝑣 =

27.3)
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(b) Roll rate model fit (𝐽𝑝 = 11.7)
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(c) Yaw rate model fit (𝐽𝑟 = 29.6)
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(d) Lateral acceleration model fit (𝐽𝑎𝑦 = 17.1).

Fig. 9 Lateral-directional state space model fit (𝑱 = 21.4)
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Fig. 10 Time-domain comparison between lateral-directional model and flight test data (TIC = 0.11).

Next, the state space model was fit to the lateral-directional responses. The identified parameters are shown in Table
7. The control derivatives 𝑌𝛿𝑎 and 𝑁𝛿𝑎 were dropped from the model structure, and set to zero. Both the overall and
individual cost functions indicate an excellent fit, with all values less than 30. Just one parameter, 𝑌𝑟 , exceeds the
insensitivity guideline, but several parameters exceed the Cramér-Rao guideline. It is likely that these errors are a result
of the coherence drop near the Dutch-roll mode. Comparison between the model and flight data is shown in Fig. 9.
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The model was validated with data that was collected during an aileron doublet maneuver, followed by a large bank
maneuver, shown in Fig. 10. The roll rate and roll angle are predicted accurately for the entirety of the maneuver. The
directional responses are predicted accurately in the transient stage of the maneuver, but show error in the settling stage.
This is likely caused by variance from the trim airspeed, as the average airspeed during this maneuver was 19 m/s. As a
result, the model over-predicts the Dutch-roll damping and exhibits phase lag. Still, the model indicates good predictive
accuracy even during a maneuver with very large angular rates. The TIC is 0.11, which indicates an excellent fit.

C. Nondimensional Stability and Control Derivatives
Nondimensional stability and control derivatives were calculated from the state space models, using equations from

[15]. The computation of the nondimensional derivatives is a combination of multiple variables that each have their
own associated uncertainty. This includes the dimensional derivatives, steady state conditions (which are particularly
uncertain for a small UAS), and moment of inertia terms which were estimated using the compound pendulum method
[19]. As such, the uncertainties of the nondimensional derivatives must be estimated, as they cannot be computed
directly. Identification of these parameters and uncertainties is useful for comparison with other methods, such as
wind-tunnel testing or numerical methods, where the nondimensional form of the derivatives may be more useful.
The uncertainties of the nondimensional derivatives were estimated using Monte Carlo simulation. Each of the

uncertain variables used in computation of the nondimensional derivatives was simulated as a Gaussian random variable
(GRV), with statistics listed in Tables 8 and 9. Variables not listed in the tables, such as mass and geometric properties,
are assumed to be known exactly, and thus are not simulated as GRVs. For the dimensional derivatives, the uncertainty
is represented by the Cramér-Rao bound, which has been scaled by 2 to represent the standard deviation, as mentioned
in Section III.B.1. The standard deviation of the other GRVs is computed from experimental data.

Table 8 Longitudinal random variable statistics.

U0 (m/s) 𝚯0 (deg) Iyy (kg m2) Dimensional derivatives
Nominal value 17 3 0.126 Identified value

Standard deviation 1.5 1.5 0.008 𝐶𝑅

Table 9 Lateral-directional random variables statistics.

U0 (m/s) 𝚯0 (deg) Ixx (kg m2) Izz (kg m2) Dimensional derivatives
Nominal value 15 5 0.158 0.217 Identified value

Standard deviation 1.5 1.5 0.009 0.013 𝐶𝑅

95% Confidence Interval

68% Confidence Interval

Nominal value

Fig. 11 Longitudinal nondimensional stability and
control derivatives.

95% Confidence Interval

68% Confidence Interval

Nominal value

Fig. 12 Lateral-directional nondimensional stability
and control derivatives.
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A convergence study was performed to determine the number of iterations needed to accurately estimate the
confidence intervals. For all derivatives, the probability density function remained relatively constant after 5000
iterations. The nominal value, 68th percentiles, and 95th percentiles were then computed from the converged probability
density function. The nondimensional derivatives and associated confidence intervals are shown in Fig. 11-12, and
listed fully in Tables 10-11.
The estimated confidence intervals can provide a sense of which nondimensional derivatives were identified most

accurately. The longitudinal derivatives most related to the short-period mode (i.e. 𝐶𝐿𝛼
, 𝐶𝑚𝛼

, 𝐶𝑚𝑞
, 𝐶𝐿𝛿𝑒

, and 𝐶𝑚𝛿𝑒
)

have lower uncertainty, while the parameters related to the phugoid mode have higher uncertainty. This matches with
the state space model results, as the phugoid dynamics were not fully identified. For the lateral-directional model, all of
the derivatives except 𝐶𝑛𝑝

exhibit relatively low uncertainty, indicating the accuracy of the identified state space model.
𝐶𝑛𝑝

is largely related to Dutch-roll damping and is typically negative in value, becoming closer to zero as the damping
decreases [15]. Thus, the light damping of the Dutch-roll mode of this UAS could be a cause of the high uncertainty of
this term.

Table 10 Longitudinal nondimensional stability and control derivatives.

Parameter Lower Bound
(95% Confidence)

Lower Bound
(68% Confidence)

Nominal
Value

Upper Bound
(68% Confidence)

Upper Bound
(95% Confidence)

CD0 0.0131 0.041 0.0689 0.1004 0.1318
CD𝛼

-0.321 -0.1721 -0.0245 0.1276 0.2759
CDq 0.5859 0.8629 1.1655 1.482 1.8195
CD𝛿e 0.0011 0.0150 0.0348 0.0566 0.0866
CL0 0.0034 0.0501 0.0993 0.1515 0.2051
CL𝛼

3.1973 3.5007 3.8652 4.2690 4.7691
CLq -0.1409 -0.0963 -0.0611 -0.0275 -0.0020
CL𝛿e 0.2919 0.4586 0.6640 0.8938 1.1812
Cm0 -0.0136 -0.0098 -0.0064 -0.0032 -0.0002
Cm𝛼

-0.3234 -0.2811 -0.2437 -0.2092 -0.1810
Cmq -3.1588 -2.5978 -2.074 -1.579 -1.1493
Cm𝛿e -0.8776 -0.7114 -0.5867 -0.4872 -0.4119

Table 11 Lateral-directional nondimensional stability and control derivatives.

Parameter Lower Bound
(95% Confidence)

Lower Bound
(68% Confidence)

Nominal
Value

Upper Bound
(68% Confidence)

Upper Bound
(95% Confidence)

Cy𝛽 -0.5203 -0.4588 -0.4063 -0.3635 -0.3264
Cyp 0.1251 0.1657 0.2112 0.2613 0.3181
Cyr 0.1880 0.3735 0.5675 0.7769 1.0021
Cy𝛿a - - 0 - -
Cl𝛽 -0.0493 -0.0383 -0.0285 -0.0192 -0.0105
Clp -0.6598 -0.5689 -0.4917 -0.4234 -0.3637
Clr 0.0946 0.1556 0.2227 0.2962 0.3766
Cl𝛿a 0.2733 0.3314 0.4078 0.5087 0.6441
Cn𝛽

0.0350 0.0395 0.0450 0.0513 0.0587
Cnp -0.0437 -0.0265 -0.0096 0.0070 0.0248
Cnr -0.1931 -0.1655 -0.1409 -0.1204 -0.1034
Cn𝛿a -0.0938 -0.0683 -0.0488 -0.0321 -0.0189
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V. Conclusion
A system identification procedure was developed based on the frequency response method outlined in [1] and tailored

to the application of small, flying-wing UAS with only elevon controls. Configurable, automated frequency sweeps were
used as control inputs to excite the longitudinal and lateral-directional UAS dynamics over a large range of frequencies.
Adjusting control input parameters in real-time based on the UAS response, which was monitored via telemetry, ensured
that the UAS responded with ample SNR and stayed near the trim condition. This resulted in high-quality flight data
used for system identification. Low-order transfer functions were identified to provide initial parameter estimates
and further verification of state space results. A simultaneous fitting procedure ensured the short-period parameters
estimated from transfer functions matched well with those identified from the state space model results. Both the transfer
function and state space models were identified with a high accuracy, as shown through the various performance metrics
and comparison with doublet data. Finally, nondimensional stability and control derivatives were computed from the
identified state space models for comparison with other aerodynamic modeling method. Monte Carlo simulation was
employed to estimate the confidence intervals of these parameters.
Future results could be improved by collecting data with longer record times, which can lead to identification of

lower frequency dynamics. This could be accomplished by modifying the procedure so that visual line-of-sight is not
always necessary, such as through further automation of the procedure or through the use of first-person view systems.
Additionally, collecting more flight data on calmer days could improve the SNR of the directional responses and improve
the coherence and accuracy of the Dutch-roll mode identification. The results of this work can facilitate many other
areas of research such as controller design, state estimator design, or turbulence encounter analysis. Future directions
include extending the procedure to include thrust models and developing full-envelope dynamic models, which have a
wider range of applicability than a state space model linearized at a single trim point.
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