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Abstract

This paper introduces a Satellite-based Cross-Calibration (SCC) method for spectral reflectance
estimation of Unmanned Aircraft System (UAS) multispectral imagery. The SCC method pro-
vides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers
(DN) to reflectance when satellite data is available. The proposed method is evaluated using a
multispectral dataset, including orthorectified KHawk UAS DN imagery and Landsat 8 (L8) Op-
erational Land Imager (OLI) Level-2 surface reflectance (SR) data over a forest/grassland area.
The estimated UAS reflectance images are compared with NEON Imaging Spectrometer (NIS)
SR data for validation. The UAS reflectance showed high similarities with the NIS data for the
NIR and Red bands with Pearson’s R values being 97% and 95.74% and root mean square errors
(RMSE) being 0.0239 and 0.0096 over a 32-subplot hayfield.
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1. Introduction

Unmanned aircraft systems (UAS) have been widely used for many multispectral remote
sensing applications, including tornado damage track identification (Wagner et al., 2019; Gowravaram
et al., 2018), agriculture mapping (Torres-Rua et al., 2015; Niu et al., 2019; Zhao et al., 2015),
and forest fire monitoring (Ononye et al., 2007; Merino et al., 2012; Fraser et al., 2017). UAS
aerial images can facilitate real-time observations for regions of interest at high spatiotemporal
resolutions (e.g. sub-meter spatial resolution and hourly temporal resolution), which can en-
able small-scale feature detection that may or may not be visible in satellite or aircraft imagery.
They can also provide data under cloudy conditions when satellite and aircraft imagery are ob-
structed. However, one of the biggest challenges for UAS based multispectral remote sensing is
the retrieval of reflectance from raw orthorectified UAS images in digital numbers (DN).

In recent years, there have been notable contributions towards ground based-radiometric cal-
ibration for UAS multispectral imagery (Stark et al., 2016; Edwards et al., 2019). The most
popular methods use either commercial or customized ground reflectance target boards as a ref-
erence before, during, and after the UAS flight to identify the relationship between DN and re-
flectance for each spectral band. A semi-automatic-model-based method was proposed to convert
raw UAS images to reflectance using a white Barium Sulfate panel and a Halon board (Zaman
et al., 2014). Similarly, a customized gray gradient Masonite panel with nine different levels
was used for UAS image radiometric calibration using a simplified empirical line method (Wang
and Myint, 2015). Their results showed that the relationship between UAS imagery in DN and
reflectance is non-linear for many commercial off-the-shelf cameras. Recently, a subband empiri-
cal line radiometric calibration method was proposed using a six-band miniature multiple camera
array (mini-MCA) by Tetracam (Deng et al., 2018), which used standard diffuse panels as refer-
ence boards. The above methods have been widely used in research communities for reflectance
estimation of UAS images. However, they are dependent on the accuracy and the Lambertian
properties of the reference boards. To avoid this issue, most UAS groups use spectroradiometers
before every survey mission to accurately measure the reflectance of the reference boards. These
instruments can be expensive and infeasible for many UAS end-users, who are constrained by a
budget. Also, many existing UAS data sets have not been converted to spectral reflectance due
to a lack of ground spectroscopy measurements.

Satellites have been the primary source for large-scale multispectral remote sensing appli-
cations including burn severity mapping, earthquake damage assessment, and landslide extent
mapping (Stow et al., 2007; Voigt et al., 2007). Free and open satellite data can be obtained
from the National Aeronautics and Space Administration’s (NASA) Landsat, Terra, Aqua, and
European Space Agency’s (ESA) Sentinel. However, these satellites provide imagery at lower
spatial resolutions (10 m or lower) with relatively slow revisit times (1 - 16 days).

While satellite imagery possesses reliable radiometric accuracy, UAS can acquire images
at desirable spatiotemporal resolutions, which has led to efforts towards understanding the re-
lationship between UAS and satellite remote sensing data. High-resolution aerial observations
from UAS were used to increase the spatial resolution of satellite data for precision agriculture
(Hassan-Esfahani et al., 2017). Similarly, the variations in Normalized Difference Vegetation
Index (NDVI) across different pixel scales were studied among canopy and non-canopy vegeta-
tion using various sensing payloads including UAS cameras, Landsat 8 (L8) Operational Land
Imager (OLI), and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Wang et al.,
2017). Airborne data from manned aircraft has also been explored for multispectral remote sens-
ing (Joan-Cristian et al., 2019). Detailed statistics and cost analysis between UAS, manned air-
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craft, and satellite remote sensing platforms were provided for precision viticulture applications
(Matese et al., 2015) and a satellite-based local bidirectional reflectance distribution function
(BRDF) correction method was introduced for radiometric correction of digital aerial images
using data from Landsat 5 and 7 (Tuominen and Pekkarinen, 2004). While satellite, manned
aircraft, and UAS all have their advantages and disadvantages, it is important to understand the
radiometric relationships between different remote sensing data from various sources for future
integrated and improved earth observations.

For accurate integration and comparison of multisource remote sensing data, UAS and satel-
lite reflectance imagery acquired at the same time are preferred to minimize radiometric differ-
ences. However, this can be difficult due to other constraints. In such cases, satellite imagery
acquired a few days before or after the UAS campaign can be considered for radiometric stud-
ies and comparison. For example, UAS and RapidEye images three days apart were used for
precision viticulture applications (Matese et al., 2015), and L8 images acquired two days after a
UAS mission were compared to the UAS reflectance and NDVI values for vegetation monitoring
(Berra et al., 2017). Similarly, an adaptive classification approach for precision agriculture mon-
itoring was developed where drone and L8 images acquired 7 days apart were used (Murugan
et al., 2017).

This paper focuses on the development of a low-cost cross-calibration method for estimation
of UAS spectral reflectance at high spatial resolution using satellite reflectance data of the same
area which can be beneficial to UAS operators and research groups who want to: 1) collect new
UAS data but do not possess accurate spectroradiometers and ground target boards, 2) calibrate
existing UAS data collected without a ground reflectance reference, and 3) study the radiomet-
ric relationships between multi-scale remote sensing data from satellite, manned aircraft, and
UAS for enhanced Earth observations. The proposed method is demonstrated using orthorec-
tified KHawk UAS DN imagery and L8 OLI Level-2 (L2) surface reflectance (SR) data of a
forest/grassland area in Kansas. The cross-calibration functions between these two data are first
identified for each spectral band and then used to convert high-resolution UAS DN images to re-
flectance. The proposed Satellite-based Cross-Calibration (SCC) method is finally validated by
comparing the estimated UAS reflectance images with National Ecological Observatory Network
(NEON) Image spectrometer (NIS) atmospherically corrected SR data.

2. UAS and Satellite Remote Sensing Data

This section provides descriptions of the study area and the remote sensing data used to
formulate and validate the proposed method.

2.1. Study Area
An area of 0.5 square kilometers at the University of Kansas Field Station (KUFS) is selected

as the study area (Fig. 1). It is located at 39.054◦,−95.190◦, elevation 331 m in the deciduous
forest and tall grass prairie ecotone of northeastern Kansas (KBS, 2019). Fig. 1 shows the
the study area and the corresponding orthorectified UAS image. Note that this area contains a
32-subplot hayfield (labelled in Fig. 1) close to the northwest boundary, which is maintained
annually by the Kansas Biological Survey (KBS). Each subplot (10 m × 10 m) is given the same
treatment (seeded, fertilized, or hayed) and is maintained to have the same vegetation (Foster
et al., 2010). This hayfield is well suited for validation of the proposed SCC method. This area
is also one of the 81 NEON field sites, a 30-year ecological monitoring project, and one of the
most extensive initiatives of the National Science Foundation (NSF) (NEON, 2019).
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Figure 1: Study area.

2.2. KHawk UAS Data
KHawk 2 UAS is a low-cost multispectral remote sensing platform developed by the Co-

operative Unmanned Systems Lab (CUSL) at the University of Kansas, shown in Fig. 2. It is
equipped with a Ublox-Lea 6h GPS receiver and a Paparazzi TWOG autopilot, which can sup-
port both manual and autonomous flight. The detailed specifications are provided in Table 1.
The UAS can carry one camera at a time for image acquisition. In this paper, two PeauPro82
modified GoPro Hero 4 Black cameras (PeauProductions, 2017) are used for multispectral image
acquisition with one providing imagery in the visible spectrum (RGB) and the other in the NIR
spectrum. The spectral characteristics of the modified GoPro camera are shown in this section.

Table 1: KHawk 2 UAS specifications
Description Value

Take-off Weight 1.7 kg
Wingspan 1.2 m

Cruise Speed 16 m/s
Endurance 30 min

Spatial Resolution 0.1 m
(at 120 m above the ground)

The KHawk 2 UAS was deployed for multispectral data acquisition over the study area on
June 7, 2017. Two flights were conducted, one for NIR (09:49-10:19 AM) and the other for RGB
(12:11-12:32 PM) video acquisition. It was flown autonomously at an altitude of 120 m above
ground level with a minimum horizontal and vertical overlapping percentage of 75% between
flight lines to ensure accurate image orthorectification. The KHawk 2 flight locations (white
circles) which are used for the orthorectification are shown in Fig. 2. The acquired images
were georeferenced and orthorectified using Agisoft Photoscan Professional software to produce
orthomosaics in visible and NIR bands at a spatial resolution of 0.1 m. The spatial accuracy
of the generated orthomosiacs was calculated by performing a comprehensive comparison with
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ArcGIS World Image which has a spatial resolution of 0.5 m or better in the continental United
States (ArcGIS, 2021). A total of 10 high-quality control point pairs were randomly selected
from the UAS and ArcGIS World images for comparison. The horizontal root mean square error
(RMSE) for these 10 points is 4.72 m.

Figure 2: KHawk 2 UAS (L) and KHawk 2 UAS flight path over the study area (R).

Table 2: Spectral Characteristics of KHawk 2 and L8 Remote Sensing Systems
Sensor Bands FWHM (nm) Peak (nm)

OLI Red 635.85–673.32 654.59
NIR 850.54–878.79 864.67

Modified PeauPro 82 GoPro Red 583.9–710 627.6
(RGBt)

Modified PeauPro 82 GoPro NIR 825.4–880 852.7
(NIR)

2.3. Landsat 8 Satellite Data

The L8 satellite is equipped with OLI and Thermal Infrared Sensor (TIRS) instruments for
multispectral image acquisition. The OLI measures light at 9 spectral bands ranging from 430
to 1380 nm (NASA, 2019) . Operating at an altitude of 705 km above ground level, the OLI can
provide calibrated reflectance images of the Earth every 16 days at spatial resolutions of 15 m
(panchromatic band) and 30 m (all other bands). In this paper, OLI L2 SR images of the study
area acquired on June 7, 2017 at 12:00 PM are used. The OLI L2 SR images are derived through
the atmospheric correction of OLI Level-1 (L1) products using the Landsat Surface Reflectance
Code (LaSRC) algorithm (USGS, 2020). The L8 OLI images demonstrate a spatial accuracy of
12 m or better (NASA, 2021).
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The KHawk GoPro and OLI sensor spectral characteristics (PeauProductions, 2017) are com-
pared and shown in Table 2. It can be observed that the NIR band of OLI is similar to the GoPro
camera while the Red band of OLI is narrower than that of the GoPro camera.

3. Spectral Reflectance Estimation of UAS Imagery

This section provides detailed descriptions of the proposed method for spectral reflectance
estimation of multispectral UAS DN imagery. The objective of this method is to convert raw UAS
images in DN at high spatial resolution to reflectance using available satellite reflectance data.
The main advantage of this method is that spectral reflectance can be estimated from UAS DN
images for free or at very low-cost. In addition, this method will ensure similarity between the
UAS and satellite imagery, which can later be used for multi-scale remote sensing applications
of large fields such as crop monitoring and disaster assessment. The proposed method can be
broken into the following steps for researchers who want to collect new UAS data.

1. UAS Campaign Planning - Plan the UAS data acquisition based on the availability of
satellite data and favorable weather conditions. UAS campaign should follow the time
schedule of satellite imagery collection.

2. UAS Data Processing - Collect UAS multispectral imagery of a given region of interest
and perform georeferencing and orthorectification.

3. Satellite Data Acquisition - Satellite reflectance data of the region of interest is recom-
mended to be acquired based on certain factors including acquisition time, cloud cover,
and atmospheric correction (explained in further detail in Sec. 3.1).

4. Cross-Calibration and Conversion - After the acquisition of UAS DN and satellite re-
flectance imagery, the SCC method can be implemented to identify the cross-calibration
functions for each spectral band (explained in further detail in Sec. 3.2). The identified
cross-calibration functions can then be used to convert raw UAS DN imagery to reflectance
values.

For researchers who have already collected their raw UAS data without ground calibration
boards or ground spectrometer measurements, the following steps can be used instead.

1. Find suitable reference of surface reflectance either from satellites (L8, Sentinel 2, Planet,
etc.) or from airborne data (NAIP, NEON, etc.).

2. UAS Data Processing – (same as above).
3. Cross-Calibration and Conversion – (same as above).

3.1. Satellite Data Acquisition

Satellite reflectance data for a given region of interest (UAS survey area) can be downloaded
for free or at low-cost from designated websites such as United States Geological Survey (USGS)
Earth Explorer, Copernicus Open Access hub, Planet, etc. Reflectance data from any satellite
(Landsat, Sentinel, Planet, etc) can be used in this method and the following factors need to be
considered during the selection.

1. Acquisition Time: The satellite data acquisition time can be a critical factor in the effec-
tiveness of the method. It is desired that the satellite data is acquired at the same time as
that of the UAS image so that the reflectance is the same. In case of unavailability of such
data, satellite data acquired close to the time of UAS campaign can be potentially used.
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2. Cloud Cover: Ideally, cloud free satellite observations of the region of interest are desired.
In cases with partial cloud obstruction, the unobstructed areas can be used to identify the
cross-calibration functions which can then be used to calibrate the UAS data in cloud-
obstructed areas. If there is a total cloud obstruction, satellite images acquired before or
after the UAS survey can be used if available.

3. Atmospheric Correction: Satellite images are required to be atmospherically-corrected to
convert UAS DN to surface reflectance. Therefore, L2 data is recommended.

Satellite images acquired at the same time with UAS are preferred for this method. In cases
when no suitable satellite images are available, aircraft imagery such as those from National
Agriculture Imagery Program (NAIP) or NEON can also be used to serve as a reference re-
flectance image of the same area. The SCC method is described in the following subsection.

3.2. Satellite-based Cross-Calibration Method

Given an orthorectified UAS image X′ in DN at high spatial resolution (kM × kN pix.) and
a satellite atmospherically-corrected reflectance image Y at medium spatial resolution (M × N
pix.), a cross-calibration function F(X′) can be identified for each spectral band that can convert
UAS images in DN at high spatial resolution to spectral reflectance. Here, k is the ratio be-
tween the spatial resolutions of satellite and UAS images which can be derived from the dataset.
For example, k is 30 if the spatial resolutions of satellite and UAS images are 30 m and 1 m
respectively. The main steps of this method (Fig. 3) include:

1. UAS image resampling: Resample the high-resolution UAS image (X′) to a medium-
resolution image (X) to match the spatial resolution of the satellite image (Y). Existing
methods like nearest neighbor, bilinear, or bicubic methods can be used. Bicubic interpo-
lation is used in this work.

2. Pixel selection: Select UAS and satellite pixel pairs at medium spatial resolution, (X1,Y1),
which is a subset of the original UAS and satellite image pair, (X,Y). Here, the objective
is to exclude pixels that can potentially induce errors in the function identification and is
explained in detail later in Sec. 3.2.1.

3. Function identification: Use least-squares optimization methods to find the optimal cross-
calibration function based on selected pixel pairs.

4. UAS reflectance estimation: Apply the identified function to the high-resolution UAS DN
image (X′) and finally obtain UAS reflectance image (Y ′).

3.2.1. Pixel Selection
In this work, the pixel pairs are selected based on two conditions, a) low sub-pixel variability

and b) non-shadow pixels.
The first condition is to exclude pixels with high sub-pixel variability within a medium-

resolution pixel (e.g. a 30 m × 30 m area for one OLI pixel). This is an important step as it
can reduce the impact of mixed pixel effect of the lower resolution satellite image on the overall
method. Essentially, this condition filters out the pixels that correspond to areas with varying
reflectance values. This is determined based on the sub-pixel Coefficient of Variation (CV),
calculated from high spatial resolution UAS image in DN. CV is the standard deviation divided
by the mean value (σ/µ) within a pixel at medium-resolution. The concept is further shown
in Fig. 4. CVB represents the CV of pixel B in X, which is calculated using the mean (µA)
and standard deviation (σA) of all the pixels in a subgroup A(k × k in X′). A threshold can be
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Figure 3: SCC method flowchart.

empirically defined to exclude all pixels in X with higher CV. The recommended threshold can
be selected as the mean CV of all the pixels in the image, C̄V .

The second condition aims to exclude all the shadow pixels. Generally, UAS images ac-
quired at low altitudes tend to capture leaf canopy shadows. Since these shadows may not be
observed in fine detail from satellite images due to lower spatial resolutions and may also show
different patterns due to different acquisition time and different viewing angles/distance, it is
not recommended to include the shadow regions for function identification. An empirical pixel
thresholding method can be used to detect shadows in the UAS images, where thresholds can be
applied to identify all the shadow pixels (Aboutalebi et al., 2019). It is worth mentioning that
there exist other feature-based image processing methods for shadow detection which can also
satisfy this condition. After detection of the shadow pixels in high-resolution UAS imagery, the
corresponding pixels in resampled UAS imagery at medium-resolution can then be rejected.

In summary, the low sub-pixel variability condition can be first applied to the UAS image, X,
which rejects pixels exhibiting high sub-pixel variability (CV ≥ C̄V). This condition detects and
rejects many shadow pixels as long as the shadows occupy only a portion of the pixel. However,
in cases where pixels are mostly covered with shadows, the second condition is needed.
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Figure 4: Coefficient of variation calculation using images X′ (L) and X (R).

3.2.2. Function Identification
The objective of this step is to identify the cross-calibration functions between the selected

sample, (X1,Y1). Both linear and nonlinear functions have been used in the literature to convert
DN to reflectance. In this paper, the exponential function is selected based on recent literature
(Wang and Myint, 2015; Deng et al., 2018) using similar cameras (commercial grade). The
Ordinary Least Squares (OLS) and Weighted Least Squares (WLS) regression methods are used
for the parameter identification of the optimal cross-calibration functions.

Ordinary Least Squares. The OLS method is used to estimate the unknown parameters in a lin-
ear regression model by minimizing the sum of squared errors. It is worth emphasizing that, the
OLS method is optimal under the assumption that the errors or the residuals are homoscedastic
and serially uncorrelated across the measurement range (StatisticsSolutions, 2020). For remote
sensing images from different sources and at varying spatial resolutions, there is a high possi-
bility of outliers and changing uncertainties across the reflectance range which may violate this
condition.

Weighted Least Squares. When the OLS assumption of constant variance in the errors is violated
(not homoscedastic), the WLS method can be used. The main difference is that in WLS, each
data point in the given set of observations is weighed differently based on their resulting error
variance. For example, data points with high error variances (e.g. outliers) are weighed very low
compared to points with lower error variances. As a result, the WLS method is less sensitive
to outliers as compared to the OLS method and has been used in remote sensing (Zhang et al.,
2008; Shimabukuro and Smith, 1991; Nencini et al., 2008). Another difference is that the WLS
minimizes the sum of weighted squared error instead of sum of squared error as shown below
(Mathworks, 2020).

S =

n∑
i=1

wi(yi − ŷi)2, (1)

where wi are the weights of each data point.
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In this paper, a variant of the WLS, called the Iteratively Weighted Least Square Regression
(IWLSR) is used. This method has been successfully implemented for automatic relative radio-
metric normalization of satellite imagery (Zhang et al., 2008). The IWLSR method, initialized
with the error residuals from the OLS method, iteratively determines the optimal weights for
each data point in the given set of observations. The method is described below (Zhang et al.,
2008).

Consider a set of observation data, (x j, y j) such that j = 1, 2, 3....n. The OLS is first used to
estimate the slope and intercept, m and p respectively, such that:

y j = mx j + p + ε j, (2)

where ε j is the error residual for the jth data point. Next, a variable t is defined such that t = ε/σε ,
where σε is the standard deviation of the error residual vector. Here, t is an approximate one
degree of freedom chi-square distribution (χ2(1)). This is used to calculate the weight vector, w,
for the next iteration.

w = P{χ2(1) > t} = 1 − P{χ2(1) ≤ t}. (3)

P in the above equation represents the chi-squared cumulative probability function. The
above steps constitute one iteration. With the new weights, the updated slope and intercept are
calculated, which starts the next iteration. The algorithm runs until the difference in the weights
between two consecutive iterations falls below a specified value.

Finally, cross-calibration functions are identified for each spectral band that can be used to
estimate spectral reflectance of UAS DN images. The SCC method is demonstrated in the next
section.

4. Results

The results of the proposed SCC method is presented in this section using a multispectral data
set including KHawk UAS DN images and OLI SR data. The estimated KHawk high-resolution
reflectance images are compared with high-resolution NIS SR images for validation.

4.1. Reflectance Estimation of KHawk UAS DN Images

The multispectral dataset is shown in Fig. 5, including orthorectified high-resolution (1 m)
KHawk DN, resampled medium-resolution (30 m) KHawk DN, and medium-resolution (30 m)
OLI SR images for the NIR band. The high-resolution and the resampled medium-resolution
KHawk DN images share the same pixel range of 100-200 and the OLI SR image ranges from
0-0.6.

Pixel pairs are selected using the Pixel Selection method described in Sec. 3.1. In this paper,
the mean CV in the image X, C̄V is used as the threshold to perform this selection. Fig. 6 shows
the selected pixels (circles) overlaid on the orthorectified and resampled UAS NIR DN image. As
mentioned, the excluded pixels either represent high sub-pixel variability or shadows (example
shown in Fig. 6).

OLS and WLS regression methods are tested on the selected pixel pairs for function identi-
fication. Fig. 7 shows the identified exponential cross-calibration functions using both methods
for the NIR and Red bands. Note that exponential functions can be converted to linear functions
by taking the natural log on both sides of the equation.

10



Figure 5: KHawk UAS and OLI NIR images of study area: orthorectifed high-resolution KHawk DN image (L), resam-
pled medium-resolution KHawk DN image (M), and medium-resolution OLI SR image (R).

Figure 6: Selected sample pixels after Pixel Selection and example of excluded pixels.

In order to identify the optimal exponential function from the aforementioned regression
methods, error residuals and error variances are analyzed. Fig. 8 shows the error residual plot
for both methods, where the y-axis represents the error residual and x-axis (yhat) represents the
natural log of the estimated KHawk reflectance. It can be observed that the WLS method re-
sults in smaller and more importantly, more consistent error variance as compared to OLS. The
total error variance for NIR/Red bands were 0.0061/0.0156 and 0.0011/0.0025 for the OLS and
WLS methods respectively. Therefore, the WLS method is selected for function identification.
Table 3 shows the functions identified using the OLS and WLS methods. Here, xi represents
the KHawk DN values and yi represents the OLI SR values with i = 1, 2, 3, ...N, where N is the
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Figure 7: Identified cross-calibration function curves overlaid on selected sample for NIR (L) and Red (R) bands.

total number of pixels in the selected pixel pairs. The identified functions are used to convert the
high-resolution KHawk DN images to spectral reflectance for the NIR and Red bands.

Figure 8: Error residuals for NIR (L) and Red (R) bands.

Table 3: Identified functions using the OLS and WLS methods.
Band OLS WLS
NIR yi = 0.0483e0.0115xi yi = 0.0358e0.0132xi

Red yi = 0.0198e0.00078xi yi = 0.0160e0.00095xi

4.2. Validation Using NIS Images

The estimated KHawk reflectance images at 1 m spatial resolution are compared to NIS SR
images at the same resolution for validation. This subsection is broken down into: 1) NEON data
description, 2) effects of spectral and spatial resolution on reflectance, and 3) NIS and KHawk
reflectance comparison.
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4.2.1. NEON Data Description
NEON is a continental-scale ecological observation facility project funded by NSF and op-

erated by Battelle Memorial Institute (NEON, 2019). NEON provides calibrated terrestrial,
aquatic, atmospheric, and remote sensing data of 81 field sites across the United States to the
scientific community, including the study area used in this paper. The NEON aircraft is installed
with a push broom collection style NIS, which was designed and built by NASA’s Jet Propul-
sion Laboratory (JPL) for hyperspectral remote sensing. The NIS measures light at 426 spectral
bands (with 5 nm spectral resolution) ranging from 380 to 2500 nm and produces orthorectified
reflectance mosaics at a spatial resolution of 1 m (NEON, 2020). The aircraft is flown once each
year over the study area at an altitude of 1000 m above ground level. The orthorectified images
used in this paper correspond to a flyby on June 9, 2017 at 3:38 PM. Note that these images are
atmospherically corrected using the ATCOR-4 algorithm.

4.2.2. Effect of Spectral and Spatial Resolutions on Reflectance
Difference in spectral and spatial resolutions can have an effect on the changes in reflectance

between images from different remote sensing platforms. In order to use high-resolution NIS
images for validation, consistency in reflectance between NIS and OLI SR images needs to be
established.

NIS is a hyperspectral instrument and has a higher spectral resolution (narrower wavelength
range) than the OLI. This can cause some inconsistencies between the reflectance images from
both instruments. In order to minimize these differences, spectral convolution on the hyperspec-
tral data can be performed to match the spectral response of the multispectral sensor (Zhao et al.,
2010; Jarecke et al., 2001; Barry et al., 2002). In this paper, a weighted-sum based spectral con-
volution method is used, where the spectral resolution of the hyperspectral data is transformed
to a lower value (Badawi et al., 2019; Meyer and Chander, 2007). The weights are determined
using the OLI prelaunch Relative Spectral Response (RSR) for the NIR and Red bands (NASA,
2020). The equation used to perform the convolution is shown below:

ρi =

∫ λ2

λ1
ρ0(λ) RS Ri(λ) dλ∫ λ2

λ1
RS Ri(λ) dλ

, (4)

where ρi is the spectrally convoluted NIS SR corresponding to band i, ρ0(λ) and RS Ri(λ) are the
NIS SR and the OLI spectral response of wavelength λ in band i respectively, λ1 and λ2 are the
lower and upper wavelengths of the OLI spectral range for band i.

In addition to spectral resolution differences, which is an instrument-dependent factor, dif-
ferences in spatial resolution (study area-dependent) can also cause reflectance inconsistencies
between images from different platforms. Goetz (1997) observed that images of uniform grass-
lands show consistency across different spatial resolutions. Similar patterns have also been ob-
served in open grasslands with varying grass species (Liu et al., 2017). Given these findings, the
grass regions of the study area are expected to be consistent across different spatial resolutions.
However, the tree regions may show differences due to factors such as canopy shadows and inter
tree spacing, which are generally observed in finer detail in high-resolution images.

The rest of this subsection is focused on analyzing the effect of spectral and spatial resolutions
on reflectance for the study area, including, 1) spectral resolution effect: comparison between
resampled NIS and OLI images at 30 m resolution and 2) spatial resolution effect: comparison
between high-resolution (1 m) and resampled medium-resolution NIS images (30 m) for the
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grass and tree regions. The high-resolution NIS and medium-resolution OLI NIR images are
shown in Fig. 9.

Figure 9: High-resolution NIS (L) and medium-resolution OLI NIR (R) images of study area.

Effect of Spectral Resolution. Although the NIS images are spectrally convoluted using Eq. 4,
some differences are still expected. The NIS NIR and Red SR images are resampled to 30 m
resolution and compared to corresponding OLI images, shown in Fig. 10. It can be observed
that while the NIR band shows high similarities for most of the points, a constant bias is seen in
the Red band. The RMSE and mean percentage (MP) of the difference between images from the
two sources are calculated for each band to be 0.0112 and −0.0043 for the NIR band and 0.0014
and −0.0274 for the Red band.

Figure 10: NIS and OLI SR comparisons for the NIR (L) and Red (R) bands.

Effect of Spatial Resolution. The differences between the high-resolution (original) and resam-
pled NIS images are calculated for the grass and tree areas separately. One pixel in the resampled
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NIS image is compared to the mean of the corresponding 30× 30 pix. grid in the high-resolution
NIS image. RMSE and mean percentage error (MPE) are calculated for each band and shown in
Table 4. Additionally, sub-pixel variability within each 30 × 30 pix is also calculated using the
CV. Mean CVs for grass and tree areas are also shown in Table 4.

Table 4: Effect of spatial resolution on reflectance in grass and tree areas.

Region Mean CV (%) RMSE MPE (%)
NIR Red NIR Red NIR Red

Grass 11.01% 17.17% 0.028 0.0073 0.1% 2.4%
Tree 30.85% 44.97% 0.040 0.0068 2.8% 8.8%

It can be observed that the grass areas show higher consistencies and lower CV than the trees.
The change of spatial resolution has a small impact on the reflectance in grass areas, which also
provides a justification for our proposed cross-calibration method.

4.2.3. NIS and KHawk Reflectance Comparison
The estimated KHawk spectral reflectance images at 1 m spatial resolution are compared

with NIS SR in detail in this section. First, the KHawk images are registered with the NIS
images using a point mapping technique in MATLAB (MATLAB, 2020). This step is necessary
to reduce errors due to misalignment between the two images. A projective transformation is
performed on the KHawk image using 12 selected control point pairs. The registered NIR and
Red reflectance images from both platforms are shown in Fig. 11. Note that the black holes in
the NIS images (close to the left boundary) and in the KHawk Red image (right boundary) are
caused by orthorectification and are not used for comparison. Two analyses are performed for
comparison, 1) using a 32-subplot hayfield close to the northwest boundary and 2) using selected
grass and tree regions.

Hayfield Comparison. The 32-subplot hayfield serves as a good reference for comparison be-
cause, 1) the area is observed in images from both platforms and each subplot (grid size 10 m ×
10 m) is distinguishable, 2) the area is treated annually by KBS and the same treatment is given
within each subplot, ensuring that the reflectance within each subplot is similar (Foster et al.,
2010). Fig. 12 shows the hayfield observed by the NIS (L) and KHawk (R) NIR images. The
black box in each subplot represent a 6 m × 6 m window. All pixels within the window are
averaged to produce one value per subplot.

The averaged KHawk and NIS SR values for each subplot are compared in Fig. 13. A
good agreement can be observed between both images for the NIR and Red bands with high
correlations of 97% and 95.74% and low RMSE of 0.0239 and 0.0096.

Selected Region Comparison. In addition to the hayfield analysis, other regions in the area are
also selected for NIS and KHawk comparison. It is worth mentioning that comparing all the
pixels between the two images is difficult here due to pixel alignment and georeferencing uncer-
tainties. In fact, KHawk orthorectified images are generated from many images and has a RMSE
error of 4.72 m. Alternatively, six 3 m × 3 m regions are manually selected for comparison,
including, three grass regions and three tree regions, shown in Fig. 14-15. The region size (3
m × 3 m) is selected based on the average tree canopy size observed in this data set. Note that
shadows are excluded from the selected regions for a fair comparison. The six NIS and KHawk
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Figure 11: NIS (L) and KHawk (R) spectral reflectance images in NIR (top) and Red (bottom) bands.

reflectance values and differences between them are shown in Fig. 16 and Table 5 respectively.
Mean absolute error (MAE) and RMSE were found to be 0.0243 and 0.0306 for the NIR band,
and 0.0178 and 0.0163 for the Red band.

Two trends can be observed from Table 5, 1) tree regions exhibit higher differences in both
NIR and Red bands, 2) Red band shows slightly higher differences across most of the regions.
These observations are similar to those found in Sec. 4.2.2.

In summary, the estimated KHawk reflectance images showed high similarities with the NIS
images in grass regions, and slightly lower similarities in the tree regions. This shows the po-
tential of the proposed SCC method for other similar fields (e.g., dominant grassland), given the
availability of an atmospherically corrected satellite reflectance image.

5. Discussions

The SCC method presented in this work provides an effective and low-cost solution for the
spectral reflectance estimation of UAS DN images, under the assumption that there exists satel-
lite SR data of the same area around the same time. The main advantage of this method is
that UAS images can be converted to reflectance images without using ground reflectance target
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Figure 12: Hayfield in NIS (L) and KHawk (R) NIR reflectance images (6 m × 6 m for each box).

Figure 13: NIS and KHawk reflectance values of the 32-subplot hayfield.

boards and expensive spectroradiometers. Apart from its contributions to the UAS community,
the SCC method can also greatly benefit the satellite remote sensing community by establish-
ing cross-calibration functions between UAS and satellites thus enabling future development of
multisource and multiscale data fusion such as super-resolution for satellite imagery.

Since the proposed method uses images from different instruments, co-registration accuracy,
differences in spectral resolution (Teillet et al., 1997) and conditions during data acquisition be-
tween UAS and satellite images can play a vital role in the accuracy of the function identification.
Performing an accurate co-registration analysis between UAS and satellite images can be a chal-
lenging task considering the differences in their spatial resolutions (0.1 m and 30 m respectively).
However, since the spatial accuracy of the KHawk (4.72 m or better) and L8 OLI (12 m or better)
images are smaller than the pixel size of the L8 OLI image, the impact of co-registration accuracy
on the identified functions are not expected to be substantial. In this paper, images from three
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Figure 14: Selected tree regions in NIS (L) and KHawk (R) NIR reflectance images (3 m × 3 m for each box).

Figure 15: Selected grass regions in NIS (L) and KHawk (R) NIR reflectance images (3 m × 3 m for each box).
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Figure 16: NIS and KHawk reflectance values of the selected regions.

Table 5: Reflectance differences between NIS and KHawk.

Region NIR Red
NIS KHawk Difference NIS KHawk Difference

Grass 0.2581 0.2595 0.0014 0.0577 0.0658 0.0082
Grass 0.2599 0.2736 0.0137 0.0487 0.0583 0.0096
Grass 0.2706 0.2787 0.0081 0.0501 0.0601 0.0100
Tree 0.4957 0.5454 0.0497 0.0343 0.0547 0.0204
Tree 0.5235 0.4762 -0.0473 0.0224 0.0476 0.0251
Tree 0.4860 0.5118 0.0258 0.0229 0.0473 0.0244

sensors are used, namely, KHawk 2 UAS GoPro, OLI, and NIS. Table 2 shows that the spectral
characteristics between the GoPro and OLI sensors have small differences in peak wavelength
(< 27 nm) for both bands (Table 2). The NIS SR data is spectrally convoluted to match the
spectral response of the OLI sensor using (4). It can be observed from Fig. 10 that although the
NIR images from the NIS and OLI sensors show high similarities, the Red images have some
differences. Similar trends were also observed in Badawi et al. (2019), where the visible band
images between NIS and OLI showed lower similarities. Additionally, the OLI and NIS SR data
are subject to uncertainties of 5 − 10% respectively (Badawi et al., 2019), which can also cause
differences between their respective SR images.

Conditions such as sun angle, clouds, and weather can also affect the accuracy of the proposed
method. The ideal case is when the satellite and UAS images are acquired at the same time
under similar weather conditions. However, due to practical issues, images acquired a few days
apart are also acceptable, especially during the growing season (Apr.-Sept.), when the weather
conditions are similar. The KHawk and OLI images used in this paper were acquired on the
same day (June 7, 2017) with the KHawk NIR and RGB images acquired during 09:49-10:19
AM and 12:11-12:32 PM respectively, and the OLI images at 12:00 PM. The NIS image was
acquired two days later, on June 9, 2017 at 03:38 PM. It can be observed from Fig. 14 that leaf
canopy shadows are observed in opposite directions in NIS (towards east) and UAS (towards
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west) images. While the effect of shadows on the grass areas is not significant, more analysis is
needed to understand why they affect the reflectance calculation for tree regions.

The proposed method is developed and tested on a forest/grassland area in Kansas which
is dominated by tall grass and is expected to show small variations in reflectance values with
changes in spatial resolution. This is further validated by comparing high-resolution and resam-
pled medium-resolution NIS SR images.

It is worth mentioning that the proposed method can be implemented using any UAS camera
and satellite, including, Sentinel, Planet, etc. Also, the NIS images are used in this paper as a
validation tool and is not required to implement the SCC method. In fact, this method showed its
effectiveness in generating UAS reflectance image at 1 m, only because the available images for
validation are at that resolution. It can potentially be applied to UAS images at higher resolutions
(< 0.1 m) also.

Lastly, the proposed method has the following constraints based on the current study: 1)
requirement of atmospherically-corrected satellite reflectance data which can be used as a refer-
ence for the UAS survey. Note that airborne reflectance data such as NAIP or NEON can also be
used when satellite data is not available, 2) the accuracy of the reference data and their acquisi-
tion time will have an impact on the calculated UAS reflectance, and 3) the effectiveness of this
method has been demonstrated in a grassland/forest field and further investigations are required
to evaluate its performance in more complex landscapes and other land cover areas such as crop
fields.

6. Conclusion

In this paper, a low-cost and novel SCC method is proposed for reflectance estimation of
raw UAS DN images. This method only utilizes publicly available data without using ground
calibration targets or expensive spectroradiometers, which makes it highly feasible for many
UAS end-users. The proposed method showed its effectiveness through a forest/grassland area,
comprising of images from a low-cost KHawk 2 UAS, L8 satellite, and NEON aircraft data. The
estimated KHawk UAS NIR and Red reflectance images are validated by comparing with NIS
SR images at high-resolution. High similarities are observed with reflectance differences less
than 0.0137 and 0.01 for the grass regions and 0.0497 and 0.0251 for the tree regions.

Future objectives include: 1) testing the effectiveness of the proposed method with more
complex landscapes and other land cover types using ground spectroscopy measurements for
validation; 2) development of machine-learning based algorithms for the mapping from UAS
raw DN to reflectance and validation in different types of landscapes; 3) investigating the effect
of BRDF correction on UAS reflectance estimation; 4) comprehensive evaluation of this method
on multiple data sets from different satellites such as Sentinel 2 and Planet.
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