

1

Fire Data Collection and Sharing

Saket Gowravaram

Ph.D. Candidate

Cooperative Unmanned Systems Lab (CUSL), University of Kansas

Nov 17, 2021

Data Sharing

FOREST SERVICE

- We can share UAS-acquired fire data that is available for download and use by researchers and engineers.
- This data will benefit the following groups:
 - Fire spread researchers;
 - Post-fire ecology researchers;
 - Prescribed fire community;
 - Fire fighters/first responders;
 - UAS groups.

Fire Data in Google Earth

IM . GENET

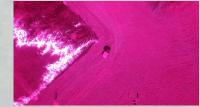
Fire Data Overview

- Satellites
 - Multispectral imagery;
 - Vegetation indices/Land cover change products.
- Aerial
 - Remote sensing:
 - Optical (RGB, NIR, Thermal) imagery;
 - Lidar data.
 - In-situ sensing:
 - 5-hole pressure data for 3D wind and turbulence measurement;
 - Atmospheric sensors: humidity, temperature, C02, etc.

Ground

- Ground multispectral pictures;
- Weather station for wind, temperature, humidity measurements;
- Location of fire setting crew (prescribed fire) and fire fighting crew (wildfires);
- Field measurements:
 - Biomass (pre and post fire);
 - Moisture.

What Research Questions can be Addressed?


- Accurate data-driven models for wildfire prediction and prevention.
 - Pre-burn fuel and moisture conditions, weather conditions, terrain types.
- Accurate data-driven models for prescribed prediction and planning.
 - Pre-burn fuel and moisture conditions, weather conditions. When to burn?
- What are the ecological effects of fires under different conditions??
 - Burn severity, land cover change, and CO2 emissions.
- How do fires behave under different conditions?
 - Fire location, Fire ROS, Flame height, and temperature.
- How to plan a robust and safe path for UAS for fire observation??
 - Smoke-generated turbulence, flight performance, desired flight path and altitude
- Test-beds of development of UAS real-time fire following algorithms.
 - Direct georeferencing algorithm validation, UAS guidance development.

Examples of Aerial Data

Individual Multispectral Frames

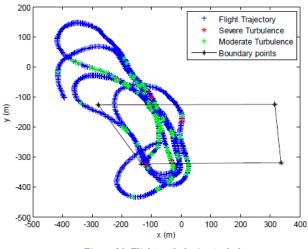
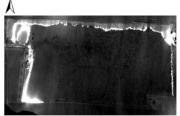
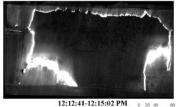
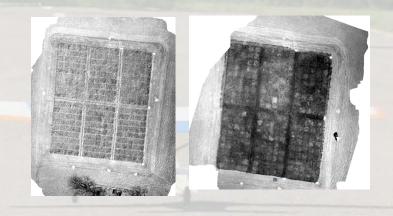
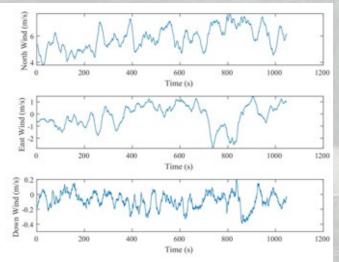




Figure 19. Flight path during turbulence.

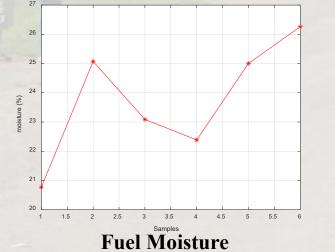

12:06:50-12:09:18 PM

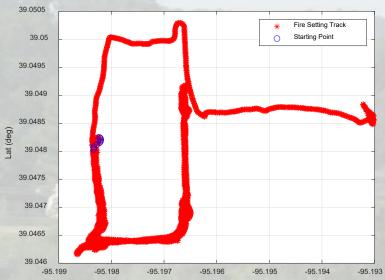
12:09:34-12:10:44 PM

12:15:27-12:17:47 PM

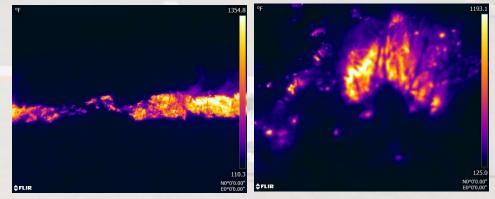

Orthorectified and Registered Images

Nov 17, 2021





Examples of Ground Data



Weather Station: 3D Midflame Wind

Prescribed Fire Setting Crew Locations

Ground pictures

Nov 17, 2021