4.1: Exponential Functions

An exponential function is of the form $f(x) = a \cdot b^x$ over the domain of all real numbers, where

- a is a non-zero real number called the **initial** value and b is any positive real number such that $b \neq 1$.
- The domain of f is all real numbers.
- The range of f is all positive real numbers if $a > 0$.
- The range of f is all negative real numbers if $a < 0$.
- The **y-intercept** is $(0, a)$, and the **horizontal asymptote** is $y = 0$. The graph has NO **x-intercept**.
- If $b > 1$, then the function is an exponential growth. That is, if $a > 0$, as $x \to \infty$ $y \to \infty$.
- If $0 < b < 1$, then the function is an exponential decay. That is, as $x \to \infty$, $y \to 0$.
- A few graphs:
Compound Interest

- \(A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \)

 \(A(t) \) = Amount after \(t \) years.
 \(P \) = Principal
 \(r \) = Annual Percentage Rate (APR)
 \(n \) = Number of compounding per year

 \(t \) = Number of years
 \(\frac{r}{n} \) = Interest rate per period
 \(nt \) = Number of compound in calculation

Annual Percentage Yield

- The annual percentage yield (APY) of an investment account is a representation of the actual interest rate earned on a compounding account. It is based on a compounding period of one year.

 \[
 \text{APY} = \left(1 + \frac{r}{n}\right)^n - 1
 \]

Euler Number \(e \)

- The letter \(e \) represents the irrational number \(\left(1 + \frac{1}{n}\right)^n \rightarrow e \) as \(n \) increases without bound.

 \(e \approx 2.718282 \) and is the natural base for many real-world exponential models.

Continuous Growth

- We use the natural base \(e \) for continuous growth. \(A(t) = ae^{rt} \).

 \(A(t) \) = Amount after time \(t \).
 \(a \) = Initial value
 \(r \) = Rate of continuous growth
 \(t \) = Time elapsed

Continuous Compounding

- \(A(t) = Pe^{rt} \)

 \(A(t) \) = Amount after \(t \) years.
 \(P \) = Principal
 \(r \) = Annual Percentage Rate (APR)
 \(t \) = Number of years
1. Identify the exponential functions.

(a) \(f(x) = x^{100} + 5x^{50} \) \(\times \)

(b) \(g(x) = 3(5^{-x}) \) \(\checkmark \) \(a = 3 \) and \(b = 5^{-1} \)

(c) \(h(y) = 3e^{y-2} \) \(\checkmark \) \(a = 3e^{-2} \) and \(b = 1 \)

(d) \(i(t) = 0.5(2^{2t-1}) \) \(\checkmark \) \(a = 0.5(2^{-1}) = 0.25 \) and \(b = 2^2 = 4 \)

(e) \(j(x) = 0.2^{2x} \) \(\checkmark \) \(a = 1 \) and \(b = 0.2^2 = 0.04 \)

(f) \(k(t) = t(t - 1) \) \(\times \)

2. Evaluate each function at the value given.

(a) \(f(x) = e^{-x} \) at \(x = 2 \)
\[f(2) = e^{-2} = \frac{1}{e^2} \]

(b) \(g(t) = 2^t \) at \(t = \pi \)
\[g(\pi) = 2^\pi \]

(c) \(h(y) = 5(0.5)^y \) at \(y = -1 \)
\[h(-1) = 5(0.5)^{-1} = 5(2) = 10 \]

(d) \(i(x) = 9^{-x} \) at \(x = 0.5 \)
\[i(0.5) = 9^{-0.5} = \frac{1}{9^{0.5}} = \frac{1}{3} \]

3. If $3000 is invested at the rate of 6% per year. Find the amount in the account after 5 years if interest is compounded (a) annually, (b) semi-annually and (c) daily. (Round to nearest dollar.)

Solution: \(P = 3000, r = 0.06 \) and \(t = 5. \)

(a) \(P = 3000(1 + 0.06)^5 \approx 4015 \)
(b) \(P = 3000(1 + 0.06/2)^{10} \approx 4032 \)
(c) \(P = 3000(1 + 0.06/365)^{365 \times 5} \approx 4049 \)

4. If $2000 is invested at an interest rate of 3.5% per year, compounded continuously, find the future value of the investment after the given number of years:

(a) 2 years.
(b) 4 years

Solution:
Use formula \(A(t) = Pe^{rt} \) where \(P = 2000 \) and \(r = 0.035. \)

(a) \(A(2) \approx 2145 \) and (b) \(A(4) \approx 2300.55 \)
5. A radioactive substance decays in such a way that the amount of mass remaining after \(t \) days is given by the function \(m(t) = 13e^{-0.015t} \) Where \(m(t) \) is measured in kilograms.

(a) Find the mass at time \(t = 0 \).
(b) How much of the mass remains after 20 days.

Solution:

(a) \(m(0) = 13 \) and (b) \(m(20) \approx 9.63 \)

6. Chloe invested a total of $5000, part at 3% simple interest and part at 4% simple interest. At the end of 1 year, the investments had earned $176 interest. How much was invested at each rate?

Solution:

Let \(x \) be the amount invested at 3\% rate, then \(5000 - x \) is invested at 4\% rate.

Now total interest is \(0.03 \times x + 0.04(5000 - x) = 200 - 0.01 \times x \)

Set that equal to 176 to get \(176 = 200 - 0.01x \implies x = \frac{24}{0.01} = 2400 \) at 3\% and \(500 - 2400 = 2600 \) at 4\% rate.