4.3 Logarithmic Functions (Definition of Logarithm)

- A logarithm base b of a positive number x satisfies the following definition.
 For $x > 0$, $b > 0$, $b \neq 1$, $y = \log_b(x)$ is equivalent to $b^y = x$. where,
- We read $\log_b(x)$ as, the logarithm with base b of x or the log base b of x.”
- The logarithm y is the exponent to which b must be raised to get x.
- Also, since the logarithmic and exponential functions switch the x and y values, the domain and range of the exponential function are interchanged for the logarithmic function. Therefore, the domain of the logarithm function with base b is $(0, \infty)$. the range of the logarithm function with base $b > 0$ is $(-\infty, \infty)$.

\[
\log_b(x) = y
\]

\[
b^y = x
\]

- A few graphs:

- The difference between graph of log functions in base $b > 1$ and $0 < b < 1$ is illustrated in the above graphs.
- The logarithm with natural base e is denoted by \ln.
- The logarithm base 10 is denoted by \log, omitting the base.
1. Evaluate.

(a) $\log_3(3) = $
(b) $\log_3(81) = $
(c) $\log_9(81) = $
(d) $\log_9(3) = $
(e) $\log_9\left(\frac{1}{3}\right) = $
(f) $\log_4(8) = $
(g) $\log_2(1024) = $
(h) $\log_2(.5) = $
(i) $\log_4(\sqrt{2}) = $
(j) $\log_2(\sqrt{2}) = $
(k) $\log(10,000) = $
(l) $\log(0.1) = $

2. Solve for x.

(a) $\log_3(x) = 2.$
(b) $\log(x) = 5$
(c) $x = \ln(e^2)$
(d) $x = \ln(\sqrt{e})$

3. The intensity levels I of two earthquakes measured on a seismograph can be compared by the formula $\log\left(\frac{I_1}{I_2}\right) = M_1 - M_2$ where M_1 and M_2 are the magnitudes given by the Richter Scale.

(a) How many times more intense is an earthquake of 7.1 than an earthquake of 6 Richter?
(b) If an earthquake is 20 times as intense as another, what is the difference of their Richter scale magnitude?