6.1: Graphs of Sine and Cosine

Using the points on the unit circle, graph the sine and the cosine of \(x \). For example, the points in the first quadrants will be as following.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\cos(t))</th>
<th>point</th>
<th>(t)</th>
<th>(\sin(t))</th>
<th>point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>((0,1))</td>
<td>0</td>
<td>0</td>
<td>((0,0))</td>
</tr>
<tr>
<td>(\pi)</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>((\pi \frac{\sqrt{3}}{6}, \frac{1}{2}))</td>
<td>(\pi)</td>
<td>(\frac{1}{2})</td>
<td>((\pi \frac{1}{6}, \frac{1}{2}))</td>
</tr>
<tr>
<td>(\frac{\pi}{6})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>((\pi \frac{\sqrt{3}}{6}, \frac{1}{2}))</td>
<td>(\frac{\pi}{6})</td>
<td>(\frac{1}{2})</td>
<td>((\pi \frac{1}{6}, \frac{1}{2}))</td>
</tr>
<tr>
<td>(\frac{\pi}{4})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>((\pi \frac{\sqrt{2}}{4}, \frac{1}{2}))</td>
<td>(\frac{\pi}{4})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>((\pi \frac{\sqrt{2}}{4}, \frac{1}{2}))</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>(\frac{1}{2})</td>
<td>((\pi \frac{1}{3}, \frac{1}{2}))</td>
<td>(\frac{\pi}{3})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>((\pi \frac{\sqrt{3}}{3}, \frac{1}{2}))</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>((\pi \frac{1}{2}, 0))</td>
<td>(\frac{\pi}{2})</td>
<td>1</td>
<td>((\pi \frac{1}{2}, 1))</td>
</tr>
</tbody>
</table>

Period = 2\(\pi \)

Graph of \(y = \cos(x) \)

Graph of \(y = \sin(x) \)

Period = 2\(\pi \)
• Comparing sine functions;

- A sinusoidal function any function that can be expressed in the form \(f(x) = A \sin(Bx - C) + D \) or \(f(x) = A \cos(Bx - C) + D \).

- **Midline:** The horizontal line \(y = D \), where \(D \) appears in the general form of a sinusoidal function. (It is called midline because \(D \) is the average y-value.)

- **Amplitude:** The vertical height of a function form Midline; the constant \(A \) appearing in the definition of a sinusoidal function.

- **A periodic function:** A function \(f(x) \) that satisfies \(f(x + P) = f(x) \) for a specific constant \(P \) and any value of \(x \). \((P \) is the smallest positive value that satisfies such equation and is called the Period\.) The formula \(P = \frac{2\pi}{B} \) gives the period.

- **Phase shift** The horizontal displacement of the basic sine or cosine function; the constant \(\frac{C}{B} \) for \(-2\pi < C < 2\pi\).

Transformations:

- The above picture can be explained using transformations as well but the formulas that came easier.

- **How to graph:** Find the local max and min points, amplitude, period, phase shift and vertical transformation and graph.
1. Sketch two periods of the graph of \(y = \frac{1}{3} \sin(2x - \frac{\pi}{2}) \), labeling the maximum and minimum height, the \(x \)-intercepts and two more points on one period. List the amplitude, period and phase shift of \(f(x) \).

Solution:

- **The Amplitude is** \(A = \frac{1}{3} \)
- **Phase shift:** \(2x - \frac{\pi}{2} = 0 \) gives \(x = \frac{\pi}{4} \) (Also an \(x \)-intercept)
- **Period:** \(P = \frac{2\pi}{2} = \pi \)
- **The end of the first period is:** \(2x - \frac{\pi}{2} = 2\pi \) so \(x = \frac{5\pi}{4} \) (Also an \(x \)-intercept)
- **The \(x \)-intercept in the middle comes from** \(2x - \frac{\pi}{2} = \pi \) which gives \(x = \frac{3\pi}{4} \)
- **One maximum at** \(2x - \frac{\pi}{2} = \pi/2 \) which is \(x = \frac{\pi}{4} \) which corresponds to point \(\left(\frac{\pi}{2}, \frac{1}{3} \right) \)
- **One minimum at** \(2x - \frac{\pi}{2} = 3\pi/2 \) which is \(x = \pi \) and the corresponding point is \(\left(\pi, -\frac{1}{3} \right) \)
2. A weight is attached to a spring that is then hung from a board, as shown in Figure. As the spring oscillates up and down, the position \(y \) of the weight relative to the board ranges from \(-2\) in. (at time \(t = 0 \) second) to \(-6\) in. (at time \(t = 2\pi \) second) below the board. Assume the position \(y \) is given as a sinusoidal function of \(t \). Sketch a graph of the function, and then find a cosine function that gives the position \(y \) in terms of \(t \). Motion of this spring mass system is a simple harmonic motion.

Solution:
Amplitude is \(\frac{-2 - (-6)}{2} = 2 \) and The period is \(4\pi \) \(\Rightarrow \) \(B = \frac{2\pi}{4\pi} = 0.5 \), phase shift is 0 with a sine function and the average displacement is \(\frac{-2 - 6}{2} = -4 \) which gives the vertical shift \(D = -4 \)
So \(f(t) = 2\cos(0.5t) - 4 \) because the initial value is a maximum.

3. Find a function that models the simple harmonic motion having Period 4 and amplitude 10. Assume that the displacement is zero at time \(t = 0 \).

Solution:
\[P = \frac{2\pi}{B} \Rightarrow B = \frac{2\pi}{P} = \frac{\pi}{2} \]
\[A = 10 \]
Initial displacement is zero. We should use sine function with phase shift equal to zero.
So the function is \(f(t) = 10\sin\left(\frac{\pi t}{2}\right) \) and \(f(t) = -10\sin\left(\frac{\pi t}{2}\right) \) is also acceptable.
4. A Ferris wheel’s radius is 25 meters and boarded from a platform that is 1 meter above the ground. The six oclock position on the Ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 10 minutes. The function h(t) gives a person’s height in meters above the ground t minutes after the wheel begins to turn.

(a) Find the amplitude, midline, and period of h(t).
(b) Find a formula for the height function h(t).
(c) How high off the ground is a person after 5 minutes?

\[h(t) = 25 \sin \left(\frac{\pi}{5} t - \frac{\pi}{2} \right) + 26 \]

Solution:

(a) Amplitude is \(A = 25 \), Midline is \(y = 26 \) and period is 10 minutes. So \(B = \frac{2\pi}{10} = \frac{\pi}{5} \).

(b) \(h(t) = 25 \sin \left(\frac{\pi}{5} t - \frac{\pi}{2} \right) + 26 \)

(c) \(h(5) = 25 \sin \left(\pi - \frac{\pi}{2} \right) + 26 = 51 \) meters above the ground.

5. The period of \(f(x) = 2 \cos(4x + \pi/6) \) is

(a) \(2\pi \)
(b) \(\pi/2 \)
(c) \(\pi/2 \)
(d) \(4\pi \)

Solution: \(\frac{2\pi}{4} = \pi/2 \)
6. Graph

\[f(x) = \begin{cases}
 x & x < -2 \\
 \sin(x) & -2 \leq x \leq 0 \\
 -x^2 & 0 < x < 2 \\
 \cos(x) & x \geq 2
\end{cases} \]

Solution:

\[f(x) = \begin{cases}
 x & x < -2 \\
 \sin(x) & -2 \leq x \leq 0 \\
 -x^2 & 0 < x < 2 \\
 \cos(x) & x \geq 2
\end{cases} \]
A few Videos

1. **Graph of Sine and Cosine Functions 1:**
 https://mediahub.ku.edu/media/MATH+-+Graph+of+Sine+and+Cosine+Functions+1.m4v/1_zqn7xygk

2. **Graph of Sine and Cosine Functions 2:**
 https://mediahub.ku.edu/media/MATH++-Graph+of+Sine+and+Cosine+Functions+2.m4v/1_3i8ik9rt