Trees and How to Count Them

Jeremy L. Martin
Department of Mathematics
University of Kansas

The Frank S. Brenneman Lectures
Tabor College
March 28, 2017
A **graph** is a pair $G = (V, E)$, where

- V is a set of **vertices**, and
- E is a set of **edges**, each joining two vertices (its **endpoints**).

The **degree** of a vertex is the number of edges incident to it.
A **graph** is a pair $G = (V, E)$, where

- V is a set of **vertices**, and
- E is a set of **edges**, each joining two vertices (its **endpoints**).

The **degree** of a vertex is the number of edges incident to it.
Cycle graph C_8

Complete graph K_6

Cube graph Q_3

Complete bipartite graph $K_{5,3}$
Why study graphs?

- Real-world applications
 - Combinatorial optimization (routing, scheduling. . .)
 - Computer science (data structures, sorting, searching. . .)
 - Biology (evolutionary descent. . .)
 - Chemistry (molecular structure. . .)
 - Engineering (roads, rigidity. . .)
 - Network models (social networks, the Internet. . .)

- Pure mathematics
 - Combinatorics (ubiquitous!)
 - Discrete dynamical systems (chip-firing game. . .)
 - Algebra (quivers, Cayley graphs. . .)
 - Discrete geometry (polytopes, sphere packing. . .)
Spanning Trees

Definition A **spanning tree** of a graph G is a set of edges T (or a subgraph (V, T)) such that:

1. (V, T) is **connected**: every pair of vertices is joined by a path
2. (V, T) is **acyclic**: there are no cycles
3. $|T| = |V| - 1$.

Any two of these conditions together imply the third.
Spanning Trees

The Brenneman Lectures, Tabor College, March 2017
Spanning Trees

The Brenneman Lectures, Tabor College, March 2017

Trees and How to Count Them
Counting Spanning Trees

\[\mathcal{T}(G) = \text{set of spanning trees of } G \]
\[\tau(G) = \text{number of spanning trees of } G \]

- \(\tau(\text{tree}) = 1 \)
- \(\tau(C_n) = n \)
- \(\tau(K_n) = n^{n-2} \) (Cayley's formula; highly nontrivial!)
- \(\tau(K_{m,n}) = n^{m-1} m^{n-1} \)
- Many other enumeration formulas for nice graphs
Deletion and Contraction

Let $e \in E(G)$.

Theorem $\tau(G) = \tau(G - e) + \tau(G/e)$.

The Brenneman Lectures, Tabor College, March 2017

Trees and How to Count Them
Deletion and Contraction

Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
Deletion and Contraction

Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
- **Contraction** G/e: Shrink e to a point
Deletion and Contraction

Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
- **Contraction** G/e: Shrink e to a point

Theorem $\tau(G) = \tau(G - e) + \tau(G/e)$.

The Brenneman Lectures, Tabor College, March 2017
Deletion and Contraction

Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
- **Contraction** G/e: Shrink e to a point
Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
- **Contraction** G/e: Shrink e to a point

\[\tau(G) = \tau(G - e) + \tau(G/e) \]
Deletion and Contraction

Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
- **Contraction** G/e: Shrink e to a point
Let \(e \in E(G) \).

- **Deletion** \(G - e \): Remove \(e \)
- **Contraction** \(G/e \): Shrink \(e \) to a point

\[
\tau(G) = \tau(G - e) + \tau(G/e)
\]
Deletion and Contraction

Let $e \in E(G)$.

- **Deletion** $G - e$: Remove e
- **Contraction** G/e: Shrink e to a point

Theorem $\tau(G) = \tau(G - e) + \tau(G/e)$.

The Brenneman Lectures, Tabor College, March 2017

Trees and How to Count Them
Theorem \(\tau(G) = \tau(G - e) + \tau(G/e) \).

This formula allows easy calculation of \(\tau(G) \) and some fun results:

\[G \]

Unfortunately:

▶ "easy" does not mean "efficient": \(2 |E| \) steps are required to calculate \(\tau(G) \) this way.

▶ Useful only for graph families with recursive deletion/contraction structure (not \(K_n \), \(K_m \), \(n \), \(Q_n \), etc.).
Theorem \(\tau(G) = \tau(G - e) + \tau(G/e) \).

This formula allows easy calculation of \(\tau(G) \) and some fun results:

\[
\begin{array}{cccccccc}
G & \bullet & \quad & \quad & \quad & \quad & \quad & \quad \\
\tau(G) & 1 & 1 & 2 & 3 & 5 & 8 & 13 \\
\end{array}
\]
Theorem \(\tau(G) = \tau(G - e) + \tau(G/e) \).

This formula allows easy calculation of \(\tau(G) \) and some fun results:

\[
\begin{array}{ccccccc}
G & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\tau(G) & 1 & 1 & 2 & 3 & 5 & 8 \\
\end{array}
\]

Unfortunately:

- “easy” does not mean “efficient”: \(2^{|E|} \) steps are required to calculate \(\tau(G) \) this way.
- Useful only for graph families with recursive deletion/contraction structure (not \(K_n, K_{m,n}, Q_n \), etc.).
The Matrix-Tree Theorem

Definition Let G be a connected graph with vertices $1, \ldots, n$ and no loops. The **Laplacian** of G is the $n \times n$ matrix $L = [\ell_{ij}]$:

$$
\ell_{ij} = \begin{cases}
\deg_G(i) & \text{if } i = j, \\
-(\text{number of edges from } i \text{ to } j) & \text{if } i \neq j.
\end{cases}
$$

- L is symmetric and positive semi-definite
 - $L = \partial\partial^T$, where $\partial = \text{signed vertex-edge incidence matrix}$
- $\text{rank } L = n - 1$
- $\ker L$ is spanned by the all-1’s vector
The Matrix-Tree Theorem

Example

\[G = \begin{array}{ccc}
1 & & 2 \\
\bullet & \bullet & \bullet \\
3 & & 4
\end{array} \]

\[L = \begin{bmatrix}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{bmatrix} \]
The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}.$$
The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}.$$

(2) Let $1 \leq i \leq n$. Form the reduced Laplacian L_i by deleting the i^{th} row and i^{th} column of L. Then

$$\tau(G) = \det L_i.$$
The Matrix-Tree Theorem: Example

\[\tau(G) = 5 \]

\[L = \begin{bmatrix}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{bmatrix} \]

\[L_1 = \begin{bmatrix}
3 & -1 & -1 \\
-1 & 3 & 0 \\
-1 & 0 & 1
\end{bmatrix} \]

Eigenvalues: 0, 1, 4, 5

\[(1 \cdot 4 \cdot 5) / 4 = 5 \]

\[\text{det } L_1 = 5 \]
The hypercube graph Q_n has 2^n vertices, labeled by strings of n bits (0’s and 1’s), with two vertices adjacent if they agree in all but one bit.

Theorem The eigenvalues of the Laplacian of Q_n are $0, 2, 4, \ldots, 2n$, with $2k$ having multiplicity $\binom{n}{k}$. Therefore,

$$\tau(Q_n) = 2^{2^n-n-1} \prod_{k=2}^{n} k^{\binom{n}{k}}.$$
Threshold Graphs

A graph with vertex set \(\{1, 2, \ldots, n\} \) is a \textbf{threshold graph} if, whenever \(ab \) is an edge, so is \(a'b' \) for all \(a' \leq a \) and \(b' \leq b \).
A graph with vertex set \(\{1, 2, \ldots, n\} \) is a threshold graph if, whenever \(ab \) is an edge, so is \(a'b' \) for all \(a' \leq a \) and \(b' \leq b \).
A graph with vertex set \(\{1, 2, \ldots, n\} \) is a **threshold graph** if, whenever \(ab \) is an edge, so is \(a' b' \) for all \(a' \leq a \) and \(b' \leq b \).
A graph with vertex set \{1, 2, \ldots, n\} is a threshold graph if, whenever \(ab\) is an edge, so is \(a'b'\) for all \(a' \leq a\) and \(b' \leq b\).
Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.
Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.

![Diagram of a threshold graph](chart.png)
Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.

Vertex degrees: 4, 4, 3, 3, 2
Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.

Laplacian eigenvalues: 5, 5, 4, 2, 0

Laplacian eigenvalues: 5, 5, 4, 2, 0
Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.

\[\tau = 5 \times 4 \times 2 = 40 \quad \text{Laplacian eigenvalues: 5, 5, 4, 2, 0} \]
Theorem [Cayley–Prüfer]

\[\sum_{T \in \mathcal{T}(K_n)} x_1^{\deg_T(1)} \cdots x_n^{\deg_T(n)} = x_1 \cdots x_n (x_1 + \cdots + x_n)^{n-2} \]

- Setting \(x_i = 1 \) for all \(i \) recovers \(\tau(K_n) = n^{n-2} \)
- Can be proved either bijectively (Prüfer code) or by a souped-up version of the Matrix-Tree Theorem
- Other weighted tree counting formulas:
 - *Via bijections*: Fiedler-Sedláček (complete bipartite graphs), Knuth, Kelmans, Remmel-Williamson, etc.
 - *Via MTT*: JLM–Reiner (threshold graphs, hypercubes)
Theorem [JLM–Reiner 2005] Let G be a threshold graph on vertices $1, \ldots, n$ with degree sequence λ. Weight each edge $e = ij$ with $i < j$ by $x_i y_j$. Then the bidegree generating function is

$$
\sum_{T \in \mathcal{T}(G)} \prod_{e: i < j} x_i y_j = x_1 y_n \prod_{r=2}^{n-1} \left(\sum_{i=1}^{\lambda'_r} x_{\min(i,r)} y_{\max(i,r)} \right)
$$

and therefore (setting $y_i = x_i$) the degree generating function is

$$
\sum_{T \in \mathcal{T}(G)} \prod_{i=1}^{n} x_i^{\deg(i)} = x_1 \cdots x_n \prod_{r=2}^{n-1} \left(\sum_{i=1}^{\lambda'_r} x_i \right)
$$
Bidegree generating function:

\[x_1 y_5 \left(x_1 y_2 + x_2 y_2 + x_2 y_3 + x_2 y_4 + x_2 y_5 \right) \]
\[\times \left(x_1 y_3 + x_2 y_3 + x_3 y_3 + x_3 y_4 \right) \left(x_1 y_4 + x_2 y_4 \right) \]

Degree generating function:

\[x_1 x_2 x_3 x_4 x_5 \left(x_1 + x_2 + x_3 + x_4 + x_5 \right) \left(x_1 + x_2 + x_3 + x_4 \right) \left(x_1 + x_2 \right) \]
A **d-simplex** is the convex hull of \(d + 1 \) general points in \(\mathbb{R}^{d+1} \).
A **d-simplex** is the convex hull of $d + 1$ general points in \mathbb{R}^{d+1}.
A **d-simplex** is the convex hull of $d + 1$ general points in \mathbb{R}^{d+1}.

$d = 0$ \hspace{1cm} $d = 1$ \hspace{1cm} $d = 2$ \hspace{1cm} $d = 3$

A **simplicial complex** is a space built (properly!) from simplices.
A **d-simplex** is the convex hull of $d + 1$ general points in \mathbb{R}^{d+1}.

- $d = 0$
- $d = 1$
- $d = 2$
- $d = 3$

A **simplicial complex** is a space built (properly!) from simplices.
A **d-simplex** is the convex hull of $d + 1$ general points in \mathbb{R}^{d+1}.

$d = 0 \quad d = 1 \quad d = 2 \quad d = 3$

A **simplicial complex** is a space built (properly!) from simplices.
Combinatorially, a simplicial complex is a set family $\Delta \subseteq 2\{1,2,...,n\}$ such that if $\sigma \in \Delta$ and $\sigma' \subseteq \sigma$, then $\sigma' \in \Delta$.

$\Delta_1 = \langle 12, 14, 24, 24, 25, 35 \rangle$

$\Delta_2 = \langle 124, 245, 35 \rangle$

- **faces or simplices**: elements of Δ
- **dimension**: $\dim \sigma = |\sigma| - 1$
- **facet**: a maximal face
- **pure complex**: all facets have equal dimension
Definition Let Δ be a simplicial complex of dimension d. A subcomplex $\Upsilon \subseteq \Delta$ is a **simplicial spanning tree** (SST) if:

1. Υ contains all simplices of Δ of dimension $< d$.
2. Υ is “acyclic” and “connected”.

 ▶ **Technically:** $\tilde{H}_d(\Upsilon; \mathbb{Q}) = \tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = 0$.

 ▶ **Intuitively:** Υ has no “bubbles” whose boundary is an orientable d- or $(d-1)$-manifold.

As before, we’ll write $\mathcal{T}(\Delta)$ for the set of SSTs of Δ.
Examples of SSTs

- \(\text{dim} \Delta = 1: \mathcal{T}(\Delta) = \text{graph-theoretic spanning trees} \)
Examples of SSTs

- $\dim \Delta = 1$: $\mathcal{F}(\Delta) =$ graph-theoretic spanning trees
- $\dim \Delta = 0$: $\mathcal{F}(\Delta) =$ vertices of Δ
Examples of SSTs

- $\dim \Delta = 1$: $\mathcal{T}(\Delta) =$ graph-theoretic spanning trees

- $\dim \Delta = 0$: $\mathcal{T}(\Delta) =$ vertices of Δ

- If Δ is contractible: it has only one SST, namely itself.
 - Contractible complexes \approx acyclic graphs
 - Some noncontractible complexes also qualify, notably \mathbb{RP}^2
Examples of SSTs

- dim $\Delta = 1$: $\mathcal{T}(\Delta) =$ graph-theoretic spanning trees

- dim $\Delta = 0$: $\mathcal{T}(\Delta) =$ vertices of Δ

- If Δ is contractible: it has only one SST, namely itself.
 - Contractible complexes \approx acyclic graphs
 - Some noncontractible complexes also qualify, notably \mathbb{RP}^2

- If Δ is a simplicial sphere: SSTs are $\Delta \setminus \{\sigma\}$, where $\sigma \in \Delta$ is any facet (maximal face)
 - Simplicial spheres are analogous to cycle graphs
Pop quiz: How many spanning trees does the equatorial bipyramid
\(\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle \) have?
Pop quiz: How many spanning trees does the equatorial bipyramid \(\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle \) have?

Solution: 15.
Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle$ have?

Solution: 15.

- Either remove triangle 123 and any other triangle (6 SSTs)...

The Brenneman Lectures, Tabor College, March 2017
Pop quiz: How many spanning trees does the equatorial bipyramid
\[\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle \] have?

Solution: 15.

- Either remove triangle 123 and any other triangle (6 SSTs).
- ... or one each “northern” and “southern” triangle (9 SSTs).
Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid \(\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle \) have?

\[123 \quad 124 \quad 134 \quad 234 \quad 125 \quad 135 \quad 235\]

Solution: 15.

- Either remove triangle 123 and any other triangle (6 SSTs)...
- ... or one each “northern” and “southern” triangle (9 SSTs).
Every simplicial complex Δ of dimension d has a **Laplacian matrix** $L = L(\Delta) = [\ell_{ij}]$ with

- rows and columns indexed by $(d - 1)$-faces (**ridges**) of Δ
- $\ell_{ii} =$ number of facets containing i
- $\ell_{ij} = \pm 1$ if ridges i, j lie in a common facet, 0 otherwise

\[
\begin{bmatrix}
2 & -1 & -1 & 1 & 1 & 0 \\
-1 & 2 & -1 & -1 & 0 & 1 \\
-1 & -1 & 2 & 0 & -1 & -1 \\
1 & -1 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Simplicial Matrix-Tree Theorem
(Bolker, Kalai, Adin, Duval–Klivans–JLM, . . .)

Let Δ be a simplicial complex of dimension d.

Form a reduced Laplacian $L_T(\Delta)$ from $L(\Delta)$ by deleting the rows and columns corresponding to a $(d - 1)$-dimensional SST $T \subseteq \Delta$.

Then the “number” of spanning trees of Δ is $\det L_T$, divided by a correction factor given by T.
Counting SSTs: The Bad News

In dimension $d \geq 2$, spanning trees can have torsion.

- **Technically:** Torsion of $\Upsilon \in \mathcal{T}(\Delta) = |\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})|$
- **Intuitively:** Some piece of Υ is twisted in a funny way (e.g., a non-orientable d–manifold)

Simplicial Matrix-Tree Theorem

$$\tau(\Delta) \overset{\text{def}}{=} \sum_{\Upsilon \in \mathcal{T}(\Delta)} |\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})|^2 = \text{(correction factor)} \times \det \hat{L}_T$$

- If $d = 1$ then all summands are 1!
- In many natural cases, the correction factor is 1 as well.
Kalai’s Theorem

Simplicial generalization of the complete graph:

\[K_{n,d} = \{ F \subseteq \{1, \ldots, n\} \mid \dim F \leq d \} \]
Kalai’s Theorem

Simplicial generalization of the complete graph:

\[K_{n,d} = \{ F \subseteq \{1, \ldots, n\} \mid \dim F \leq d \} \]

Theorem [Kalai 1983]

\[\tau(K_{n,d}) = n^{\binom{n-2}{d}}. \]

More generally,

\[
\sum_{\gamma \in \mathcal{T}(K)} \left| \bar{H}_{d-1}(\gamma; \mathbb{Z}) \right|^2 \prod_{i=1}^{n} x_i^{\deg \gamma(i)} = (x_1 \cdots x_n)^{\binom{n-2}{d-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{d}}.
\]
Kalai’s theorem reduces to $\tau(K_n) = n^{n-2}$ when $d = 1$, and the weighted version reduces to Cayley-Prüfer.

Bolker (1976): Observed that $n \binom{n-2}{d}$ is an exact count of trees for small n, d, but fails for $n = 6, d = 2$.

The problem is torsion — \mathbb{RP}^2 requires six vertices to triangulate.

Adin (1992): Analogous formula for complete colorful complexes, generalizing $\tau(K_{n,m}) = n^{m-1}m^{n-1}$.
A simplicial complex Δ with vertex set $\{1, 2, \ldots, n\}$ is \textit{shifted} if whenever $a_1 a_2 \cdots a_k \in \Delta$ and $b_i \leq a_i$ for all i, then $b_1 b_2 \cdots b_k \in \Delta$.

(So one-dimensional shifted complexes are just threshold graphs.)

Theorem [Duval–Reiner 2002]

Let $\lambda_i =$ number of max-dim faces containing i.
Then eigenvalues of $L(\Delta) = \text{column lengths of } \lambda$.
(Generalization of Merris’ Theorem)

Theorem [Duval–Klivans–JLM 2009]

Factorization of multidegree g.f. for spanning trees of a shifted complex. (Generalization of JLM–Reiner formula)
Further Directions

- Theory of SSTs and the Matrix-Tree Theorem generalize easily from simplicial complexes to cell complexes
 - Cellular MTT discovered independently in contexts of probability [Lyons 2009] and mathematical physics [Catanzaro–Chernyak–Klein 2015]

- Simplicial/cell complexes that have integer Laplacian eigenvalues “should” have factorizable weighted tree g.f.’s
 - Matroid complexes; others?

- Critical groups:
 - Complex $\Delta \Rightarrow$ abelian group $K(\Delta)$ of size $\tau(\Delta)$
 - Cuts, flows, sandpile theory, “algebraic geometry on graphs”
 - Group structure very mysterious