Read the problems carefully. Solve them according to the requirements and show the key intermediate steps to receive full credits. You may use a simple calculator, but you may use neither books nor notes.
1. (10 points) Tell whether the given equations are linear or nonlinear and determine their order.

(a) \(3y'y = 2t^2\). **Nonlinear, 1st Order**

(b) \((\sqrt{3} - 1)t^3y'' + t^2y' - 3y + \cos t = 0\). **Linear, 2nd order**

(c) \(y' + 2e^y = 0\). **Nonlinear, 1st order**

(d) \(y'' + \cos y = 0\). **Nonlinear, 2nd order**

(e) \(2x''' - 7xx'' + x' + 9x = 0\). **Nonlinear, 3rd order**

2. (15 points) Consider the IVP (initial value problem)

\[ty' = -y + \sin(t), \quad y\left(\frac{\pi}{2}\right) = 0.\]

(a) Find the solution.

Solution. Rewrite the equation into

\[y' + \frac{1}{t} y = \frac{1}{t} \sin(t)\]

Then,

\[\mu(t) = e^\int \frac{1}{t} dt = e^{\ln t} = t\]

and

\[y = \frac{1}{t} \left[\int \sin(t) dt + C \right] = \frac{1}{t} \left[-\cos(t) + C \right]\]

The IC leads to \(C = 0\). Thus,

\[y = \frac{-\cos(t)}{t}\]

(b) Determine how the solution behaves as \(t \to \infty\).

Solution.

\[y(t) \to 0 \text{ as } t \to \infty\]

3. (15 points) Consider the differential equation

\[\frac{dy}{dt} = \frac{\sin(t)}{y^2}.\]

(a) Find the general solution using the technique for separable equations.

Solution. Rewrite the DE as

\[y^2 dy = \sin(t) dt, \quad \text{or} \quad \int y^2 dy = \int \sin(t) dt\]

Thus, we get

\[\frac{1}{3} y^3 = -\cos(t) + C \quad \text{or} \quad y = (-3\cos(t) + C)^{\frac{1}{3}}\]

(b) Find the solution satisfying the initial condition \(y(\pi/2) = 0\).

Solution. The IC \(y(\pi/2) = 0\) yields \(C = 0\). Thus we have

\[y = -\left(3\cos(t)\right)^{\frac{1}{3}}\]
4. (20 points) Sketch the direction field and draw some integral curves for the differential equation
\[y' = y^2 - 2y. \]

Based on your results, state the equilibrium solutions and determine their stability.

Solution.

<table>
<thead>
<tr>
<th>Slope</th>
<th>Equation</th>
<th>Isoclines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(y^2 - 2y = 0)</td>
<td>(y = 0) or (y = 2)</td>
</tr>
<tr>
<td>1</td>
<td>(y^2 - 2y = 1)</td>
<td>(y = 1 + \sqrt{2}) or (y = 1 - \sqrt{2})</td>
</tr>
<tr>
<td>-1</td>
<td>(y^2 - 2y = -1)</td>
<td>(y = 1)</td>
</tr>
</tbody>
</table>

The equilibrium solutions are \(y = 0 \) and \(y = 2 \).

\(y = 0 \) is stable whereas \(y = 2 \) is unstable.

5. (20 points) Consider the autonomous differential equation
\[y' = (1 - y^2)e^{-y}. \]

Find the equilibrium solutions and sketch some typical integral curves in the \(t - y \) plane. Based on the results you obtain, state the stability of the equilibrium solutions.

Solution. Set \((1 - y^2)e^{-y} = 0 \). We get \(y = +1 \) or \(y = -1 \). Thus, the equilibrium solutions are \(y = +1 \) and \(y = -1 \).

From the figure on the right, it is known that \(y = 1 \) is stable whereas \(y = -1 \) is unstable.

6. (20 points) A person wants to borrow $110,000 to buy a house. The lender will charge interest at an annual rate of 8.25\%. Assuming that interest is compounded continuously and that the borrower will make payment continuously at a constant monthly rate \(k \), can you tell the person how much the monthly payment (i.e. \(k \)) will be in order to pay off the loan in thirty years?

Solution. The balance equation and the initial condition are
\[\frac{dB}{dt} = \frac{0.0825}{12}B - k, \quad B(0) = 110,000 \]

We want to find \(k \) such that \(B(360) = 0 \).

The solution of the IVP is
\[B(t) = \frac{12k}{0.0825} + \left(110,000 - \frac{12k}{0.0825} \right) e^{\frac{0.0825}{12}t}. \]

Setting \(B(360) = 0 \) we get
\[k = \frac{110,000 \times 0.0825}{12} \cdot \left[e^{\frac{0.0825}{12} \times 30} - 1 \right] \approx \$825.73 \]

8.25\% per year

\(B(t) \): balance at time \(t \)

\(k \): monthly payment