Math 781: Homework Assignment # 2

due Thursday, 9/11/14

Reading 2.2

Problems §2.1: 1, 4, 9, 13, 14, 16; Problems Plus 1 and 2.

Plus 1. Given a general floating point system

\[\sigma \cdot (0.a_1 \cdots a_n)\beta \cdot \beta^m \]

with \(L \leq m \leq U \) and \(\beta > 1 \). Find the greatest and smallest positive numbers and the unit roundoff.

Plus 2. (Challenge !!!) In a typical floating point number system a non-zero number \(x \) is stored in the form

\[x = \sigma \cdot (a_1 a_2 \cdots a_t)\beta \cdot \beta^e, \]

where \(\sigma = +1 \) or \(-1 \), \(0 \leq a_i \leq \beta - 1 \), \(t = 53 \), \(\beta = 2 \), and \(-1021 \leq e \leq 1024\).

(a) Which of the following are numbers in this typical floating point number system ? Explain.

\[10, \quad 1 + 2^{-53}, \quad 1 - 10^{-53}, \quad 2^{1024} \]

(b) The following short MATLAB program is run using this typical floating point arithmetic. Is it an infinite loop ? Does it generate a floating point underflow ? Approximately what is the final value of \(E \) and explain its significance. Explain.

\[
\begin{align*}
E &= 1 \\
\text{while} \ 1 + E > 1 \\
\quad E &= E/2; \\
\text{end} \\
E &= 2*E
\end{align*}
\]