Math 781: Project # 2
Newton’s Method
(due: Tuesday, 10/7/14)

Write a computer program implementing Newton’s method. Use the program to compute the unique root of

\[x + e^{-Bx^2} \cos(x) = 0, \]

where \(B > 0 \) is a parameter to be set. Use \(B = 1, 5, 10, 25, 50 \) and various choices of \(x_0 \) (including \(x_0 = 0 \)) and study the behavior of Newton’s method. Theoretically, Newton’s method will converge for any value of \(x_0 \) and \(B \), but it may behave differently in practice due to rounding error. Compare the theoretical prediction with actual computations for large values of \(B \).

Turn in your report. The requirement for the report is the same as in Project # 1.