Math 781: Project # 3

Polynomial Interpolation Using Newton’s Divided Differences

(due: Tuesday, 11/4/14)

Implement the polynomial interpolation using Newton’s divided differences. See the algorithms at the end of this assignment. It is strongly recommended that the algorithms Divdif(d, x, n) and Interp(d, x, n, t, p) be programmed in (separate) functions (or subroutines).

Consider the famous Carl Runge example

\[f(x) = \frac{1}{1 + x^2}, \quad -5 \leq x \leq 5 \]

Use two sets of nodes

Set I: \(x_i = -5 + i \, h, \quad i = 0, 1, \ldots, n, \quad h = \frac{10}{n} \)

Set II: \(x_i = -5 \cos \left(\frac{i\pi}{n} \right), \quad i = 0, 1, \ldots, n \)

The first set of nodes are equidistant while the second set, often referred to as the Gauss-Lobatto Chebyshev points, are denser at the ends than in the middle.

Denote by \(p_n(x) \) the interpolation polynomial satisfying the conditions

\[p_n(x_i) = f(x_i), \quad i = 0, 1, \ldots, n \]

Define the maximum error as

\[E_n = \max_{i=0,\ldots,n-1} \left| p_n \left(\frac{x_i + x_{i+1}}{2} \right) - f \left(\frac{x_i + x_{i+1}}{2} \right) \right|. \]

Use your program to compute the error for various values of \(n \), say \(n = 5, 10, 20, 40, \) and \(80 \), for the two sets of nodes. What can you conclude based on the results you have obtained? (Hints for analysis: convergence and convergence rate; graph or table for the error \(E_n \) as function of \(n \).)

Turn in your report. See Project # 1 for the requirements for the format of project reports.

Algorithm Divdif(d, x, n) (for computing the divided differences)

1. Remark: On entrance, \(d \) and \(x \) are vectors with \(f(x_i) \) and \(x_i, \quad i = 0, \ldots, n \).

 On exit, \(d_i \) contains \(f[x_0, \ldots, x_i] \).

2. Do through Step 4 for \(i = 1, 2, \ldots, n \)
3. Do through Step 4 for $j = n, n - 1, ..., i$

4. $d_j := (d_j - d_{j-1})/(x_j - x_{j-i})$

5. Exit from the algorithm.

Algorithm Interp(d, x, n, t, p) (for computing $p_n(t)$ at point t)

1. Remark: On entrance, d and x are vectors containing $f[x_0, ..., x_i]$ and $x_i, i = 0, ..., n$.
 On exit, p will contain the value $p_n(t)$.

2. $p := d_n$

3. Do through Step 4 for $i = n - 1, n - 2, ..., 0$

4. $p := d_i + (t - x_i)p$

5. Exit the algorithm.