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Abstract
A collision model, modified from the Smoluchowski model, is developed for
simulating coagulation and growth of a large number of aerosol particles
with significantly different sizes. In this collision model, the particle-size
distribution is discretized in volume bins, and the total mass among all the
bins is conserved. In situations with significantly different particle sizes, the
present model reduces the number of bins compared with the previous
models, thus reducing the computational cost. By comparing the results of
the present model with the exact solution of Smoluchowski’s original model,
the accuracy of the solution is not sacrificed. Therefore, this model enables
the real-time simulation of three-dimensional, two-phase flow when
flow/particle interactions need to be considered. After implementation with
a flow solver, the model is further validated with the data from a
smoke-reduction experiment in a room-scale chamber using flow-injected
nanoparticle aggregates.

1. Introduction

Aerosol coagulation is one of the major phenomena that affect
the composition and size distribution of particles. For a
homogeneous system, the population balance for the evolution
of the particle-number density of Size i particles, ni , was
defined by Smoluchowski (1917):

dni

dt
= 1

2

i−1∑
j=1

Ki−j,j ni−j nj − ni

∞∑
j=1

Ki,jnj , (1)

where Ki,j is the collision kernel for collisions between Size i

and Size j particles. Note that the volume of a Size i particle
is i times the volume of a particle of Size 1. The first term on
the right-hand side of equation (1) accounts for the increase
in Size i particles due to collisions of smaller sized particles,
and the second term accounts for the losses from this size of
particles due to collisions with particles of other sizes.

In practical applications, to cover the size range from
smallest to largest, millions of different sized particles are
needed, and equation (1) needs to be solved as many times.
For example, if the particle diameter ranges from 1 to 100 µm,

1 Author to whom any correspondence should be addressed.

then at least 1 million sizes are needed, because the sizes of
particles are determined by

di = i1/3d1 , (2)

where di is the diameter of a Size i particle. Thus the
computational cost is prohibitively high for a problem in
a three-dimensional domain. Although some successful
implementations of the above equation have been reported (e.g.
Reade and Collins 2000), most of them are implemented on a
single grid. In unsteady, three-dimensional flow problems, the
number of computational grids is at least thousands, or even
millions. It is thus nearly impossible to solve equation (1)
for particles of all sizes on every computational grid at each
time step. Therefore, approximating a virtually continuous
size spectrum using a set of size classes, or bins, is very much
needed in reality. In an early simulation by Lawler et al (1980),
a weighting function is introduced to distribute coagulated
particles whose sizes are between two consequent bins into
each of these two bins. There are other approaches using this
discrete bin structure including those of Gelbard et al (1980),
Batterham et al (1981), Marchal et al (1988) and Hounslow
et al (1988). In the review work of Kostoglou and Karabelas
(1994), the authors compare these four approaches and refer

0022-3727/07/082603+10$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2603

au
tho

r's
 pe

rso
na

l c
op

y

http://dx.doi.org/10.1088/0022-3727/40/8/027
mailto: zzheng@ksu.edu
http://stacks.iop.org/JPhysD/40/2603


N Zhang and Z C Zheng

to this type of coagulation methods as ‘zero order methods,’
when the distribution within each bin is assumed to be constant.
They also stated that the zero order methods usually result
in diffusion errors while the higher order methods reduce the
diffusion errors but tend to introduce dispersion errors. There
are more recent zero order methods implemented by Jacobson
et al (1994) and Sandu (2002) and higher order methods by
Fernandez-Diaz et al (2000). In these three implementations, it
is assumed that the particle-number density inside one volume
bin is uniform and the volume ratio of two adjacent bins has
to be small enough (<1.5) to provide accurate results.

The method developed in this study is designed for
simulating practical gas/particle multiphase flow problems.
The first targeted issue that leads to the development
of the model is related to coupled simulation between
flow and particles on a large number of three-dimensional
computational grids, with turbulence present. For this type of
problem, the simulation of flow phase is already expensive. For
the particulate phase, the number of equations is determined
by the number of bins. It is therefore necessary to reduce
the bin number to the minimum, i.e. to increase the volume
ratio of two adjacent bins to the maximum. For this purpose,
several modifications and approximations have been made to
equation (1). In the current method, larger sizes of bins can
be used without losing desired accuracy. The second issue
for having this model is related to the collision simulation for
particles with significantly different sizes. For example, by
using nanoparticle aggregates to reduce smoke in a chamber,
relatively large particles are injected into a chamber to ‘capture’
very small smoke particles. For this problem, since the size
difference is so big between the nano-aggregates and smoke
particles, the effect of collision between same sized particles is
negligible compared with the collisions between different sized
particles. The continuous bin structures between the small and
large particles are very wasteful in this problem. The current
method uses the discontinuous bin structures, thus reducing
the computational cost significantly.

There are several advantages of the current model over
the previous methods. In the literature, most of the collision
models have been developed for specific purposes, such as
pelletization (Batterham et al 1981), crystallization (Marchal
et al 1988, Hounslow et al 1988) and aerosols (Gelbard et al
1980). Although the intended applications of the current
model are closely related to the behaviour of aerosols, the
computational difficulties related to the double integrals in
Gelbard et al (1980)’s method negate the overall computational
benefits of using their approach, as pointed out by Kostoglou
and Karabelas (1994). For the nature of the smoke-reduction
application, the number of different particle sizes involved
is small, while the three-dimensional flow computation is
rather heavy. The current collision model is thus designed for
handling this particular computational need. Using the current
model, the size spectrum can be minimized into the smallest
number of bins in comparison to other methods, maintaining a
reasonably achievable accuracy. The possible errors, which
are rooted in enforcing conservation of mass rather than
conservation of particle numbers, can be controlled to a
minimal level when the mass ratio between the small and large
particles is very small in the application. Therefore the current
model enables a practical implementation of the unsteady

three-dimensional simulation of two-phase flow problems with
flow/particle interactions.

2. Description of the present collision model

While equation (1) represents a population balance in terms of
particle numbers, the basic assumption adopted in the present
coagulation method is that the total mass of all the bins is
conserved. All the particles considered are assumed spherical.
When the collisions occur, the mass lost in certain sizes of
particles is equal to the mass increase in the other sizes of
particles. This mass balance can be written as

dρi

dt
=

i−1∑
j=1

�ρj loss to i −
∞∑

j=1

�ρi loss to j , (3)

where ρi is the mass of the Size i particles, and is defined as

ρi = wini = 1

6
πd3

i γini, (4)

where wi (kg/count) and γi are the weight of an individual
particle and material density of Size i particles, respectively.
Equation (3) represents the change of mass with time for Size i

particles. The first term on the right-hand side of equation (3)
is the mass gain due to collisions of smaller sized particles,
while the second term accounts for the mass loss of the current
sized particles due to collisions between the current size and
the other sizes. The mass loss in one size is accounted for
by the mass increase in the other sizes. The expression for
�ρj loss to i will be determined in section 2.1.

Now if we consider mass balance among volume bins
instead of among particle sizes, equation (3) still stands, with
the index i now denoting Bin i instead of Size i, and ρi

represents the mass of Bin i. At this point, an additional
variable needs to be introduced, the volume ratio between two
bins:

Vi,j = vi

vj

= d3
i

d3
j

, (5)

where vi is the volume of particles in Bin i. If Vi,j is constant
between two consecutive bins, by denoting this ratio as Vratio,
we have

Vratio = vi+1

vi

. (6)

For any values of Vratio greater than one, the volume of a Bin i

particle is
vi = v1V

i−1
ratio (7)

and its radius is
ri = r1V

(i−1)/3
ratio . (8)

Consequently, from equation (8), it can be deduced that the
number of bins that covers the particle-size range from radius
r1 to ri is

i = 1 + ln[(ri/r1)
3]/ ln[Vratio]. (9)

In realistic applications, the ratios between two consecutive
bins may not always be constant.

Under the bin structures, there exist two scenarios of
particle collisions: (1) collisions between two different bins
and (2) collisions within one bin. Each of these two scenarios
are dealt with, respectively, in the next two subsections.
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2.1. Collisions between two different bins (inter-bin
collisions)

If Vratio is large, the two adjacent bins have a wide size
difference. Therefore, when collisions occur between a certain
bin of small particles (small bin) and a certain bin of large
particles (large bin), we assume that the resulting particles
will fall only into that particular large bin and not into any
other larger bin. That is, the mass loss from the small bin
equals the mass increase in the large bin. When this type of
collisions happen, the mass loss in a bin is incurred only when
the particles in this bin collide with particles in larger bins.
The mass loss in Bin j is based on equation (1):

�ρj loss to i = wj�nj loss to i = wjKi,jninj . (10)

Hence, the addition in Bin i is

i−1∑
j=1

�ρj loss to i =
i−1∑
j=1

wjKi,jninj . (11)

The summation in equation (11) corresponds to the overall gain
in Bin i due to collisions with all the smaller bins. Based on
the definition of wi in equations (4) and (5), we can get

wj = Vj,iwi

γj

γi

= wi

Vi,j

γj

γi

. (12)

Hence, equation (11) becomes

i−1∑
j=1

�ρj loss to i =
i−1∑
j=1

γj

γiVi,j

wiKi,jninj . (13)

On the other hand, the mass loss in Bin i, which is due to
collisions only between Bin i particles and particles in the bins
larger than Bin i, can be expressed using equation (10) as

∞∑
j=i+1

�ρi loss to j =
∞∑

j=i+1

wi�ni loss to j =
∞∑

j=i+1

wiKj,injni .

(14)

Note the summation in the above equation starts at i + 1,
indicating that the mass loss is caused only by collisions
happening between the current bin and the larger bins.
Substituting equations (11) and (14) into equation (3), we have

dρi

dt
= d(wini)

dt
=

i−1∑
j=1

γj

γiVi,j

wiKi,jninj −
∞∑

j=i+1

wiKj,injni .

(15)
We also assume that wi does not change with time, dividing wi

from both sides of equation (15) to yield, in terms of particle-
number density,

dni

dt
= ni

i−1∑
j=1

γj

γiVi,j

Ki,jnj − ni

∞∑
j=i+1

Ki,jnj . (16)

The first term on the right-hand side of equation (16) accounts
for the addition from the smaller bin particles colliding with
the current bin particles, while the second term accounts for the
loss of the current bin particles colliding with the particles in
larger bins. This equation is based on the assumption that all

collisions within one bin can be neglected. In other words,
collisions among particles within the same bin would not
generate particles large enough to jump into the next larger bin.
Under this assumption, although the number or the average
size of the particles in this bin may change due to the inner-bin
collision, the total mass of this bin still remains the same if
there are only inner-bin collisions.

It needs to be mentioned that in equation (16), mass
conservation is represented in terms of particle-number
densities. The particle volumes before and after inter-bin
collisions are not conserved at the same time. Since the size and
material density of particles in each bin are assumed unchanged
when inter-bin collisions occur, the particle-number density in
the large bin has to change to enforce the mass conservation.
This contradicts the reality where the size and material
density of the resultant particle can change instead. However,
the model is intended to reasonably predict particle-number
densities by enforcing mass conservation, because the capture
efficiency in particle collisions is proportional to the time-
dependent number densities of the particles.

It is noticed that equation (16) can be re-written as

ni(t) = ni(0) exp

[ ∫ t

0


i−1∑

j=1

γj

γiVi,j

Ki,jnj −
∞∑

j=i+1

Ki,jnj


 dt

]
,

(17)
where the value of ni remains zero if initially ni at t = 0 is
zero. As stated at the beginning of this subsection, when the
small-bin j and large-bin i particles collide, this model allows
the reactant particles, i-bin and j -bin particles, to become i-
bin particles only. The errors due to this assumption become
negligible in most of our applications in which the growth rate
of ni , represented by the exponential function in equation (17),
is not excessively large. Again, this inter-bin model only works
well in those applications where the differences in particle
sizes are very big and the bins are discontinuous, such as in
the smoke-reduction application, when very large particles are
injected to capture very small smokeparticles. The results of
the smoke-reduction application will be presented in the next
section.

A validation case has been facilitated to compare the
results from equations (16) and (1). The result using
equation (1) is considered the ‘exact’ solution. The case is
for two groups of significantly different sizes of particles, with
initially mono-sized particles in each group. The particles are
confined in a cube of 1 m3 that has no mass in and no mass out,
so that the total mass is conserved. There are a total of 550
consecutive sizes to be included in the exact simulation, from
Size 1 to Size 550. At the beginning of the simulation, the
nonzero-number particles, with substantially different sizes as
the intended model case, are selected, Size 1 and Size 64. All
the other sizes are initially with zero particle number. The
particles are of the same material so that the material density
is the same for different sized particles. The initial particle-
number densities are specified as nsize1 = 1 × 1012count m−3

and nsize64 = 1.5625 × 1010 count m−3, and zero for the other
sizes. The reason for selecting the value of nsize64 is to match
the same mass as Size 1. The physical diameter of Size 1
particles is specified as 1 µm so that the physical diameter of
Size 64 particles is 4 µm, according to equation (2).
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When applying the present model for simulation to
compare with the above described exact simulation, three bins
are used. Bin 1 to include Sizes 1–7 particles, Bin 2 to include
Sizes 8–63 and Bin 3 to include Sizes 64–511. The initial
particle-number density in each of the bins becomes

nbin1 =
7∑

i=1

nsizei , (18)

nbin2 =
63∑
i=8

nsizei (19)

and

nbin3 =
511∑
i=64

nsizei . (20)

Therefore, from the initial condition for the exact simulation,
the corresponding initial condition for the bin model becomes
nbin1 = nsize1, nbin2 = 0 and nbin3 = nsize64. Note that in
the exact equation, equation (1), the particle-number density
is for each size, while in the bin model, equation (16), the
particle-number density is for each bin. A constant volume
ratio between the two consecutive bins, Vratio = 8, is used.
The representative diameters of the particles in each of the
bins are 1 µm, 2 µm and 4 µm, respectively.

A homogeneous, isotropic, constant-intensity turbulence
is specified as the background turbulence for the collision
mechanism. The Saffman–Turner collision kernel (1956) is
used in the simulation as

K(turb)i,j =
(

8π

15

)1/2 a3
i,j

tk
, (21)

where ai,j is the collision diameter defined as ri + rj and
tk is the Kolmogorov time scale defined as (ν/ε)1/2 with ν

and ε, respectively, the kinematic viscosity and the turbulence
dissipation rate. In this test case, a relatively strong turbulence
level is specified, resulting in the constant part of equation (21)
becoming (

8π

15

)1/2 1

tk
= 1000(1/s) . (22)

The total simulated time is one minute and the time
step is 0.05 s. A first-order Euler scheme is used for time
marching. This scheme is selected for its simplicity of coding
and easy implementation later with the fluid flow solver. The
accuracy of the selected time step has been tested by comparing
the results using a time step of 0.1 s and showing negligible
differences. Figure 1 shows the evolution histories of the mass
of each bin. The ordinate in figure 1 is the volume fraction of
each bin’s particles in the cube. Because all the particles are of
the same material, the volume fraction can be used as indicative
of mass balance among the bins. Since the results of the exact
solution are for each size, for the purpose of comparison, we
combine the total mass in Size 1–Size 7 to represent the mass
of Bin 1, Size 8–Size 63 for Bin 2 and Size 64–Size 511 for
Bin 3. It is clear that the present model matches the exact
solution perfectly. The mass of Bin 1 decreases while the mass
of Bin 3 increases, justifying the assumption that the collisions
between the small-bin particles and the large-bin particles lead
to the resulting particles falling into the large bin. According
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Figure 1. Time history comparison of total mass in each bin
between the present model and the exact solution.

to the wide-bin-width assumption in the present model, since
the particle-number density of Bin 2 is originally zero, it would
remain zero in this bin all the time in the results of this model, as
expressed in equation (17). It is also evident from the results of
the exact simulation that the value of particle-number density
in Bin 2 is very small (close to zero), with the value of particle-
number density approximately 8 orders of magnitude smaller
than those in the other bins even after a minute of simulation
time. That means that the inner-bin collisions in Bin 1 are
unlikely to generate particles large enough to jump into the
next bin if the bin width is sufficient.

Another aspect to be pointed out is the shape effect of
the particles on the population dynamics. Kostoglou et al
(2006) used a fractal dimension, D, to define the morphology
of aggregates:

m = k

(
R

α

)D

, (23)

where R is the radius of the aggregate consisting of m smaller
primary spherules of size α and k is a constant. The fractal
dimension, D, varies from 1 (linear addition) to 3 (complete
coalescence). In that study, the parametric evolution of the
fractal dimension of aggregates was thus developed, and the
case of Brownian coagulation in the continuum regime was
studied. They stated that the fractal dimension of a small
aggregate colliding with a large aggregate has small influence
on the fractal dimension of the resulting aggregate. This is
the same situation as in the current simulation where small
bin particles collide with large bin particles. Therefore, the
variation of the fractal dimension of the large bin particles
is negligible. In equation (5), it is shown that the fractal
dimension in the current model is fixed at 3. However, other
fractal dimensions can possibly be included if more detailed
models of physical processes need to be considered such as the
structure of aggregates. In addition, mass conservation is the
first priority in the current model, as shown in equation (3), the
starting equation of the model. The volume is then determined
based on the fixed material density of each bin, assuming
the change of material density is negligible. If the material
density of each bin is the same, then the overall volume of
particles is conserved simultaneously. If not, the volume is not
conserved. In that sense, the variation of fractal dimension is
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A collision model for a large number of particles

not as important as in the approaches by Kostoglou et al (2006)
where the volume of the resulting aggregate is determined by
the fractal dimension.

2.2. Collisions within one bin (inner-bin collisions)

When the bin width is not very large, inner-bin collisions can
produce particles that belong to the bins of larger particles.
In this model, we only consider the case that the inner-bin
collisions cause particles to jump into the immediate-next
larger bin, but not into other larger bins. That is, when Bin
i particles collide with each other, a portion of the resulting
particles can become the particles in the larger bin, Bin i + 1.
To account for this effect, two more terms are added to
equation (16):

dni

dt
=

i−1∑
j=1

γj

γiVi,j

Ki,jninj +
γi−1

γiVi,i−1
Ci−1Ki−1,i−1ni−1ni−1

−ni

∞∑
j=i+1

Ki,jnj − CiKi,inini, (24)

where all the constants Ci vary from 0 to 1, representing the
probability of the resulting particles that can jump into the next
bin. The second and the fourth terms on the right-hand side of
equation (24) are the added terms accounting for the addition
and loss from the inner-bin collisions. If all the Ci are very
small or if the collision kernel, K , between two same sized
particles is very small, the second and the fourth terms can be
neglected. Under these conditions, equation (24) reduces to
equation (16).

In the current volume-bin model, the size of particles in
a bin is always assumed at the lowest end of the bin. The
generality of the method is not lost with this assumption
because of the fact that the volume ratio, as defined in
equation (5), need not be constant. The inner-bin-collision
effect in different bin sizes should then be included in the
values of the inner-bin-collision coefficient Ci . Obviously, this
coefficient varies with different bin ratios. For example, in the
previous validation case in section 2.1, the bin-volume ratio is
8, and the inner-bin collision is very insignificant according to
the exact simulation of equation (1). Based on the assumption
of this model, if the bin-volume ratio is 2, all the Ci values are
1 in all the bins because any inner-bin collision can result in a
particle in the next bin.

In order to test the bin-ratio effect on the value of C,
we use numerical experiments to investigate the behaviour of
C. While it is difficult, if not impossible, to simultaneously
determine all the Ci values that can also change with time,
we design the numerical experiment to target the first C value
C1, after one minute of simulation time. In the numerical
experiments, for the exact simulation, Size 1 particles of 1 µm
diameter are initially assigned a particle-number density of
nsize1 = 1×1012 count m−3 for the ‘1×’ case, with all the other
sizes of particles having a zero particle-number density. As a
result, in the present bin-model simulation, the initial condition
for particle-number density in each bin is nbin1 = nsize1, and
nbini = 0 for the rest of the bins. The cases of ‘2×,’ ‘5×’ and
‘10×’ are also tested to investigate the effect of initial particle-
number density, with the initial particle-number density being
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Figure 2. Distribution of particle-number density versus particle
size from the exact solution using Smoluchowski’s model,
equation (1), for the cases of ‘1×,’ ‘2×,’ ‘5×’ and ‘10×.’

twice, five times and ten times, respectively, that of the value
in the ‘1×’ case.

The total number of consecutive sizes included in the exact
solution, the computation of equation (1), is again 550. The
distribution of particle-number density after one minute of
exact simulation for the first 64 sizes is plotted in figure 2.
The first three columns in table 1 show the particle-number
density of the exact solution after the one-minute simulation,
grouped into each bin with the bin ratio from 2 to 8 at the
four different initial particle-number density values for Size 1
particles (the ‘1×,’ ‘2×,’ ‘5×’ and ‘10×’ cases).

For the first three bins in the bin-model simulation, each
is assigned a C value, C1, C2 and C3, respectively. The fourth
column in table 1 represents the C value in Bin 1, C1, using
the exact simulation results after one-minute simulation. A
guessed value of C1 is initially put into equation (24) for a
certain bin ratio, with C2 and C3 assigned zero. Then the
calculated result using these C values is compared with the
particle-number density of Bin 1 and Bin 2 from the exact
solution of equation (1) after one minute of simulation. With
several times of calibrations of C1, the two results match
exactly. The resulting C1 value is thus considered a correct
value to represent the inner-bin collision for that particular
bin ratio and particular initial particle-number density. Note
that with the assumption of a zero value of C2 and C3, the
determined C1 value is only valid when the particle-number
density of the exact solution in Bin 3 is sufficiently small,
which indicates the inner-bin collision in Bin 2 is negligible,
thus justifying the usage of C2 = 0 and C3 = 0. This
is because with C2 and C3 being zero, from the bin-model
equation, equation (24), the inner-collision terms (the second
and fourth terms) are also zero, equivalent to the inter-collision
only case for Bin 3. And with nbin3 = 0 initially, the two inter-
collision terms (the first and third terms) are zero, too. As a
result, nbin3 remains zero in the bin model. Therefore, the C1

values in table 1 are only listed for the cases when the particle-
number density of the exact solution in Bin 3 is less than <10−5

times those of Bin 1 and Bin 2. In this sense, the inner-bin
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Table 1. Particle-number density values in each bin and the model C1 values at different volume ratios in the cases of (a) ‘1×,’ (b) ‘2×,’ (c)
‘5×’ and (d) ‘10×.’

Volume ratio Bin 1 Bin 2 Bin 3 C

(a) 1×
2 9.422 32E+11 5.753 67E+10 2.317 99E+08 1.00000E+00
3 9.963 97E+11 3.602 72E+09 2.987 09E+02 5.917 29E−01
4 9.997 68E+11 2.318 04E+08 2.000 00E-06 3.801 93E−03
5 9.999 85E+11 1.516 32E+07 0.000 00E+00 2.489 73E−04
6 9.999 99E+11 1.001 92E+06 0.000 00E+00 1.646 67E−05
7 1.000 00E+12 6.664 58E+04 0.000 00E+00 1.096 13E−06
8 1.000 00E+12 4.454 08E+03 0.000 00E+00 7.329 98E−08

(b) 2×
2 1.777 33E+12 2.193 58E+11 3.306 58E+09 1.000 00E+00
3 1.973 28E+12 2.672 29E+y10 1.121 76E+05 1.087 98E−01
4 1.996 69E+12 3.307 45E+09 7.013 40E-02 1.336 08E−02
5 1.999 58E+12 4.161 29E+08 0.000 00E+00 1.683 02E−03
6 1.999 95E+12 5.288 31E+07 0.000 00E+00 2.142 56E−04
7 1.999 99E+12 6.765 61E+06 0.000 00E+00 2.745 08E−05
8 2.000 00E+12 8.696 54E+05 0.000 00E+00 3.532 69E−06

(c) 5×
2 3.748 89E+12 1.158 17E+12 9.233 28E+10 1.000 00E+00
3 4.664 00E+12 3.358 25E+11 1.752 57E+08
4 4.907 06E+12 9.294 11E+10 3.043 05E+04 5.815 20E−02
5 4.973 88E+12 2.612 22E+10 4.703 50E-01 1.623 34E−02
6 4.992 59E+12 7.414 84E+09 1.000 00E-06 4.613 04E−03
7 4.997 88E+12 2.118 74E+09 0.000 00E+00 1.321 68E−03
8 4.999 39E+12 6.082 91E+08 0.000 00E+00 3.804 74E−04

(d) 10×
2 5.748 37E+12 3.354 42E+12 8.502 73E+11 1.000 00E+00
3 8.073 36E+12 1.903 91E+12 2.272 96E+10
4 9.102 80E+12 8.970 54E+11 1.498 71E+08
5 9.575 84E+12 4.241 56E+11 2.494 01E+05 6.336 36E−02
6 9.797 57E+12 2.024 34E+11 1.032 57E+02 2.985 26E−02
7 9.902 76E+12 9.724 22E+10 1.055 50E-02 1.429 66E−02
8 9.953 07E+12 4.693 09E+10 0.000 00E+00 6.906 85E−03

collision considered in the numerical experiments is based on
the mass conservation between Bin 1 and Bin 2 only. In all the
numerical experiments, the collision mechanism is generated
using the same turbulence background as in the validation case
of section 2.1 and the same computational scheme is employed.

To clearly show how C1 behaves in all the experimental
cases, figure 3 is plotted and indicates that C1 decreases rapidly
with the increase of bin ratio in the ‘1×’ case. When the initial
particle-number density increases, the decrease rate of C1 is
reduced. Therefore, using this model, the inner-collision effect
can be pre-determined based on the bin-volume ratio and the
particle-number density. However, the advantage of this model
lies in the problems with large bin ratios where the inner-bin
collision can be neglected.

3. Validation with measured data in a
smoke-reduction experiment

Nanoparticle powders studied in this research are large
nanoparticle aggregates of the size of tens of micrometres.
When using injected nanoparticle powders to reduce the
smoke in an indoor environment, a situation is created with
a large number of particles having significantly different sizes.
The injected nanoparticle aggregates (of the size of tens of
micrometres) collide with the smoke particles (of the size
of 2–3 micrometres) and stick to each other. Since the

Bin volume ratio

C

1 2 3 4 5 6 7 8 9
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1x
2x
5x
10x

Figure 3. Variation of C versus the bin-volume ratio, with different
initial particle-number densities of 1×, 2×, 5× and 10×.

nanoparticle powders carrying the smoke particles have a much
larger settling velocity than the original smoke particles, they
will settle on the ground much faster and are therefore able to
quickly remove the smoke particles from air.
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A collision model for a large number of particles

Before the discussion of the flow and particulate phase
equations used in this application, the collision kernel, Ki,j ,
used in the simulation needs to be defined. In the smoke-
reduction application, the collision is induced by two effects:
one is turbulence, the other is differential sedimentation.
The turbulence collision kernel used here is again given by
Saffman and Turner (1956), as expressed in equation (21).
The differential-sedimentation-collision kernel is given by
Williams (1988):

K(sed)i,j = πa2
i,j (Usett,i − Usett,j ), if i > j, (25)

where Usett,i is the settling speed for the particles of Size
i. The differential sedimentation collision is induced by
the difference in the settling speeds when larger particles
with a faster settling speed catch the smaller particles with
a slower settling speed in the path of the settling. Notice that
the differential-sedimentation-collision effect is not significant
when particle sizes are similar. It should be noted that the
differential-sedimentation-collision kernel in equation (25)
can possibly lead to fast unconstrained spreading of any
nonstrictly monodisperse initial distribution. Williams (1988)
noted that the actual collision frequency under the influence
of gravity would be less than that indicated in equation (25)
because the distortion of the velocity field by fluid affects
the trajectories of approaching particles. To fix the problem,
Williams (1988) defined collision efficiency as the ratio of the
coagulation kernel with fluid effects to that without. In the
current bin-volume collision model, unconstrained spreading
of distributions would not occur because the model itself
produces a well-behaved problem. In the smoke-reduction
simulation application considered here, there are larger inertial
effects than Brownian diffusion effects. With a relatively
low turbulence level (except for the first few seconds) in the
chamber, constant values of relative velocity can be assumed.
Under these conditions, the collision efficiency is in the range
0.9–1 according to table 8 in Williams (1988). Therefore, the
usage of equation (25) in this particular application can be
justified.

Combining equations (21) and (25), the total collision
kernel becomes

Ki,j = K(turb)i,j + K(sed)i,j . (26)

The air/solid-particle flow problem is simulated by using
an Euler-type formulation for both the air flow and the
particulate phase. The continuous air-flow phase is governed
by the unsteady compressible flow equations:

∂ρ

∂t
+ �∇ · (ρ �u) = 0 (27)

and

ρ
D�u
Dt

= −�∇p + �∇ · ¯̄τ , (28)

where the body force, either due to the gravitational
acceleration or arising from interactions with the solid
particles, is neglected. It is therefore assumed that the air flow
affects the particulate phase significantly, while the behaviour
of the particulate phase does not have any effect on the air
flow. This one-way interaction assumption is justified for the

light-loading particulate phase considered here (Zhang et al
2005).

The collision model discussed in the previous sections is
used to include the collision effect. Because of the large size
difference between the injected particles and smoke particles
in this study, the model with only inter-bin collisions is used.
Another reason for neglecting the inner-bin collision is the
collision kernel. For most of the smoke-reduction process, the
differential-sedimentation-collision effect is dominant in the
collision kernel. The particles within the same bin are similar
in size, thus having similar settling speeds. As a result, the
collision kernel, Ki,i , calculated from equation (25) between
two similar sized particles is close to zero, and the second and
fourth terms in equation (24) are negligible. Therefore, the
inner-bin collision effect is minimal. Without the inner-bin
collision, the particulate phase transport equation is

∂ni

∂t
+ �∇ · (�uni) = − �Usett · �∇ni + �∇ · (Dd �∇ni)

+
i−1∑
j=1

γi

γjVi,j

Ki,jninj − ni

∞∑
j=i+1

Ki,jnj , (29)

where Dd is the diffusivity (both laminar and turbulent) of the
particles in air and �Usett is the particle settling speed defined as

�Usett = Ccτp �g. (30)

In equation (30), Cc is the slip correction factor (Hinds 1982),
�g is the gravitational acceleration and τp is the particle settling
time defined as

τp = ρpd
2
p

18µ
.

The diffusion coefficient in equation (29), Dd, combines the
laminar and turbulent diffusion parts, Dl and Dt . The laminar
diffusion coefficient is calculated using the Stoke–Einstein
equation (Hinds 1982):

Dl = kT Cc

3πµdp
, (31)

where k is the Boltzmann constant, 1.38×10−23 (N m K−1), T
is the absolute temperature, Cc is the slip correction factor and
µ is the dynamic viscosity of the flow. The turbulent diffusion
coefficient is defined by

Dt = νt

Sct
, (32)

where νt is the turbulent viscosity and Sct is the turbulent
Schmidt number. The turbulent Schmidt number measures the
relative diffusion of momentum and mass due to turbulence
and is on the order of unity in all turbulent flows. Because
it is an empirical constant that is relatively insensitive to the
molecular fluid properties, here it is set to be 0.7 (Yimer et al
2002) for all cases.

It needs to be pointed out that in obtaining equation (29),
the small-slip continuum model (Zhou 1993) is applied,
which is compatible with the one-way flow–particle interaction
assumption. The boundary condition requirements in the
particulate phase, for each of the convection, diffusion and
settling effects, were studied previously (Zheng and Zhang
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N Zhang and Z C Zheng

2005). The values of volume ratio, Vi,j , will be determined
based on the application case in this section later.

In the solution procedure, the FLUENT flow solver with
the realizable k−ε turbulence model (Shih et al 1994) is used to
solve equations (27) and (28), because of the better behaviour
of this model than a standard k − ε model for low Reynolds
number flow. The computational scheme is second-order in
time and space. The second-order upwind scheme is used for
the convection terms, and the second-order central differencing
is used for the diffusion terms.

Once the flow-field solutions are obtained, the velocity
field is input to the particulate phase computing subroutines to
solve equation (29). For solving the particulate phase transport
equation, equation (29), a passive scalar transport equation
solver in FLUENT is used with some modifications. For a
passive scalar φi , a general convection–diffusion equation,
∂ρφi

∂t
+ �∇ · (ρ �uφi) − �∇ · (�i

�∇φi) = Si (i = 1, . . . , N) (33)

can be solved in FLUENT using similar schemes in the flow
solver, where �i and Si are the diffusion coefficient and source
term that can be supplied by the user for each of the N scalar
equations.

In order to make use of the solver for equation (33),
equation (29) can be re-written as
∂ni

∂t
+ �∇ · [(�u + �Usett)ni] − �∇ · (Dd �∇ni)

=
i−1∑
j=1

γi

γjVi,j

Ki,jninj − ni

∞∑
j=i+1

Ki,jnj . (34)

In this format, Dd is calculated as �i in equation (33) with a
user-defined function (UDF) called ‘DEFINE DIFFUSIVITY’
to calculate the diffusion coefficient on every grid point of
the computational domain. The diffusion terms are then dis-
cretized using the second-order central differencing. The colli-
sion terms, which are the right-hand side terms in equation (34),
are implemented as the source term Si using the UDF ‘DE-
FINE SOURCE.’ The source term is handled explicitly.

On further comparing the format of equation (34) with that
of equation (33), it can be seen that modifications are needed
for the convection and unsteady terms. The convection and
settling terms of equation (34) are combined as the convection
term and solved implicitly. The convection term in its original
scalar transport equation, equation (33), has the following
general form:

∇ · �ψφi, (35)

where �ψ is a vector field. In the default convection term in
equation (33), �ψ is the product of the density and the velocity
vector:

�ψdefault = ρf �u, (36)

where ρf is the density on the cell face. Note that the �ψdefault on
all cell faces are automatically computed during the procedure
in solving the flow in FLUENT and can be directly accessed
by the user. To define the convection term using the UDF
‘DEFINE UDS FLUX’, the user needs to return the scalar
value �ψ · �A to FLUENT, where �A is the face normal vector of
the cell face. �A of all cell faces are calculated by FLUENT
and can be accessed. Since there is no ρ in equation (34) and
the settling term is added, the returned �ψ · �A becomes

�ψ · �A = �ψdefault · �A/ρf + �Usett · �A. (37)

z

x

y

Inlet A

Inlet B

Figure 4. Illustration of the chamber and the particle injection ports
and the coordinate system used in the simulation.

Because only the ρ value of the cell is recorded in the flow
solver, the face value ρf is calculated as the average of two
neighbouring cell values. The convection terms are discretized
using the second-order upwind scheme.

Finally, for the unsteady term in the scalar transport
equation, the only thing that needs to be modified is to re-define
the coefficients of the unsteady term to remove the density in
the default format. The solver requires that the unsteady term
be decomposed into an implicit and an explicit component.
For the finite-volume scheme with a first-order march in time,
we have ∫

∂ni

∂t
dV = �V

�t
nm

i − �V

�t
nm−1

i , (38)

where �V represents the volume of the cell and
m represents the current time step. In the UDF
‘DEFINE UDS UNSTEADY,’ the coefficient of the implicit
term (the nm

i term) and the whole explicit term are the
two variables to be input to the solver. Therefore, the
above computational scheme of the particulate phase using
equation (29) or (34) is first-order accurate in time and second-
order accurate in space.

Figure 4 illustrates the chamber geometry in the
experiment and simulation whose spatial dimensions are
3.7 m×2.4 m×2.4 m in the x, y and z directions, respectively.
A 96 × 64 × 64 grid mesh is placed in the three-dimensional
computational domain. Higher and lower resolution grids
were also tested to determine the necessary resolution for grid-
independent simulations. The particles are deployed through
one of the inlet ports with a velocity of 40 m s−1. The injection
lasts 2 s. The location of the inlet port A is at the upper left
quadrant 0.6 m from the left-end wall (x = 0.6) and 0.4 m
from the ceiling (z = 2.0); the inlet port B is located at the
right-end wall (x = 3.7) and at the centre of the wall (y = 1.2)
and 0.57 m from the ceiling (z = 1.83). Detailed descriptions
of the injection and measurement setup are presented in Zhang
et al (2005). The validations of the particle deposition and the
spatial distribution showed good agreement with the measured
data (Zhang et al 2005).

As illustrated in figure 4, the injection of nanoparticle
powders was through inlet port A and lasted 2 s. Initially the
chamber was filled with glycol smoke uniformly, and the mass
concentration was 150 mg m−3, with a total mass of 3.26 g.
The size of the smoke particle was approximately 2.5 µm,
and the material density of smoke particles was 1 g cm−3.
The total mass of MgO+ nanoparticles (NanoScale Material
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A collision model for a large number of particles

Table 2. Volume ratios between particles of two bins (vi/vj ).

j\i 2.5 µm 10 µm 20 µm 40 µm 90 µm

2.5 µm 1 64 512 4096 46656
10 µm 1/64 1 8 64 729
20 µm 1/512 1/8 1 8 91.13
40 µm 1/4096 1/64 1/8 1 11.39
90 µm 1/46656 1/729 1/91.13 1/11.39 1

Table 3. Injected particle properties and inlet boundary conditions.

Bin size Mass Inlet n Settling velocity
(µm) (g) (count/m3) (m s−1)

10(<15) 5 2.0E+11 0.001 214
20(15–30) 12 6.0E+10 0.004 856
40(30–60) 15 9.4E+09 0.019 424
90(>60) 20 1.1E+09 0.098 334

Inc.) injected into the chamber was 52.3 g. The size of
injected particles ranges from 5 to 140 µm. The total mass
concentration combining smoke and injected particles at the
centre of the chamber was recorded using a tapered element
oscillating microbalance (TEOM). In the simulation, five bins
of particles are allocated to represent the smoke and injected
particles and they are 2.5 µm (smoke), 10, 20, 40 and 90 µm.
The volume ratios between the five bins, calculated using
equation (5), are listed in table 2.

Since there is no particle-size-distribution measurement
at the inlet, there is no measured inlet particle-number density
to be used for the inlet boundary condition for simulation.
One way to find the approximate mass percentage of particles
in each bin from the total 52.3 g injected mass is to compare
with the deposition measurement data (Zhang et al 2005). We
counted the total number of particles of each size range in
the whole experimental period, and then calculated the mass
ratios among different size ranges. Table 3 shows the mass
for each bin’s particles and the corresponding inlet particle-
number density.

Figure 5 shows the comparison of the time history of the
total mass concentration of all sizes of particles at the centre of
the chamber. Because of the uncertainty in the inlet boundary
condition, an exact match between the simulation result and
experimental measurement is not expected. In figure 5,
the simulation results overpredict the mass concentration at
the first point (1 min). After that, the agreement with the
experimental data is relatively good. In both the simulation
result and experimental data, the decaying trend of the total
mass concentration can be clearly identified. Both the curves
become flat after about 10 min. This is because after 10 min
only a small number of injected particles is left in the chamber.
At the end of 20 min, the simulation result tends to overpredict
the mass concentration a little compared with the experimental
data. Finally, figure 5 also shows that the mass concentrations
from both the results are not less than the initial mass
concentration even after 20 min. The final mass concentration
includes both the injected particles and smoke particles. In
spite of the fact that smoke particles have been reduced (shown
in figure 6), the measure of effectiveness of clearing the
chamber should include the total mass concentration of both
the injected particles and smoke particles remaining in the
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Figure 5. Time history comparison of total mass concentration at
the centre of the chamber with the experimental measurement.
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Figure 6. Simulated time histories of mass concentration of smoke
particles in the chamber.

chamber. Therefore the results in figure 5 indicate that this
injection configuration is not very effective in smoke clearance.
In addition to the particle properties, the ineffectiveness could
also be attributed to the injection method used in the case
(Zhang et al 2005), a factor on which further investigations
are needed.

Because the experiment was not able to measure the mass
concentration of smoke particles separately, figure 6 is used
to analyse the result for smoke particles based only on the
simulation. In figure 6, the no injection curve represents the
history of average smoke mass concentration throughout the
chamber in the case of no particle injection (and also no flow
in the chamber). The reduction of smoke in the no injection
situation is only caused by the gravitational settling of smoke
particles. There is about a 9% reduction after 20 min. For
the case with injection, one curve is the history of average
smoke mass concentration throughout the chamber and the
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other is the history of the local smoke mass concentration at
the centre of the chamber. The average mass concentration
indicates the amount of smoke left in the chamber, and is
a better representation of the effect of smoke reduction in
the whole chamber. There is about a 40% reduction after
20 min with the injection. This shows that the injection of
nanoparticles significantly enhances the reduction of smoke
particles, although not necessarily the overall clearance of
the chamber as indicated in figure 5. The curve of mass
concentration at the chamber centre is very close to the
average mass concentration curve, which justifies the use of
the value measured at the chamber centre to represent the
mass concentration in the whole chamber for comparisons in
figure 5. The mass concentration at the centre is a little higher
than the average value at the end of the 20 min period. It is
noticed that the curve for the injection case becomes parallel
to the no injection curve after about 10 min, indicating that
there are not many injected particles left after 10 min and
that the reduction rate is mostly due to the smoke particle
settling.

By comparing the simulation results after the 10 min
period in figures 5 and 6, nanoparticles and smoke particles
each contribute approximately half of the mass concentration
(each about 100 mg m−3) in the chamber. Since the injected
nanoparticles have much larger sizes than the smoke particles,
the number of nanoparticles is much smaller than that of
smoke particles. Therefore there is little smoke-reduction
capability left after 10 min, resulting in the parallel curves in
figure 6 between the cases with and without injection. The
simulation result tends to underpredict the particle reduction
rate in comparison with the measurement data, partly because
the inner-bin collisions are neglected. The overpredicted total
mass concentration at the end of 20 min of the simulation
result above that of the measurement in figure 5, about
50 mg m−3, should be attributed to both smoke particles and
nanoparticles.

4. Conclusions

A collision model based on mass balance among the bin
structures is developed and successfully validated against
the exact solution. The model fits best when the bin-
volume ratio is large and the inner-bin collision can be
neglected. For smaller bin ratios, an inner-bin-collision
coefficient needs to be considered to include the inner-bin-
collision effect. This coefficient decreases when the bin ratio
increases. The decrease is more rapid when the particle-
number density in a bin is smaller. Using this collision
model, the computational overhead of the simulation can
be reduced significantly. The model is implemented with
a flow solver to simulate a smoke-reduction experiment
using the injection of nanoparticles. The simulation results
are compared with the experimental measurement data,
and the good agreement provides further evidence of the
validity of the present collision model. The collision
model effectively represents a significant enhancement
in removing smoke particles with injected nanoparticles.
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