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Introduction

Compressible Euler equations

Compressible Euler system is a fundamental model in fluid dynamics, used to
describe compressible inviscid flow, such as gases. The system was first written
down by Euler in 1757, then studied by many great mathematicians.

Figure : Shocks near a supersonic body. (Courtesy of NASA)
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Compressible Euler system is in the form of hyperbolic conservation laws

1-D hyperbolic conservation laws:

ut + f (u)x = 0,

with (t, x) ∈ R+ × R.

u(t, x) = (u1, · · · , un)T ∈ Rn,

and f : Rn → Rn is a nonlinear map.
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Initial value problem of hyperbolic conservation laws

Small data 1-d solution for system of conservation laws

Lax ’57: Riemann problems.

Glimm ’65: Global existence for small BV (bounded variation) solutions.

Other methods: Front tracking scheme, Risebro ’92, Bressan ’93; Vanishing
viscosity, Bianchini-Bressan ’05.

Stability: Bressan-T.P.Liu-T.Yang ’99; Uniqueness: Bressan-Goatin-LeFloch
’97-’99; Asymptotic behavior, T.P.Liu ’78; . . .

Major open problems

Existence for 1-d large solutions for system.
(This talk is for 1-d large solution of Euler.)

Existence for multi-d solutions for system.

Note: Small data solution means solution sufficiently close to a constant solution. Large data results have

no restriction on the size of solutions.
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Introduction

1-d compressible Euler equations

Eulerian coordinates:

ρt ′ + (ρu)x ′ = 0 , mass

(ρu)t ′ + (ρu2 + p)x ′ = 0 , momentum

(ρu2/2 + ρE)t ′ +
(
ρu3/2 + ρuE + u p

)
x ′ = 0 . energy

Lagrangian coordinates: x =
∫
ρ dx ′, t = t ′.

τt − ux = 0 , mass

ut + px = 0 , momentum

(u2/2 + E)t + (u p)x = 0 . energy

ρ : density, S : entropy,

τ : ρ−1 specific volume, E(τ, S) : specific internal energy,

u : fluid velocity, p(τ, S) : pressure.

An equation of state to complete the system. Polytropic ideal gas: p = k e
S
cv τ−γ.

Solutions in two coordinates are equivalent!
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Isentropic Euler

Assume entropy S is constant, then mass and momentum equations form a
complete system: {

τt − ux = 0
ut + p(τ )x = 0

p = τ−γ , γ > 1 .
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A pioneer work of Bernhard Riemann

Bernhard Riemann (1826-1866)
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Riemann considered 1-d isentropic gas

Exact interaction between two centered rarefaction (expansion) waves

0 x 0 x

For special examples, density ρ approaches zero at the rate

min
x
{ρ(t, x)} = O(

1

1 + t
), Courant-Friedrichs 1948.

Riemann problem

u1, τ 2u2,1 τ

Figure : Gas in a tube
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Global-in-time existence for large data solutions of Euler

Large L∞-existence for isentropic gas: by method of compensated compactness.

DiPerna ’83, Ding-Chen-Luo ’85-’89, Lions-Perthame-Tadmor-Souganidis ’94,’96.

Our target is large BV (bounded variation) existence.

The L∞ theorem does not provide desired information on structures of solutions.
The desired class of solutions is BV function, because solutions contain
discontinuities/shocks. In this class of solutions, uniqueness is given for small data
problem.

Why do we expect large BV existence?

Supported by experiments and numerics; Small BV existence. Large BV results for
special cases: Nishida ’68, γ = 1 (isothermal), Nishida-Smoller ’73, γ → 1+ .
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Introduction

Our strategy for 1-d large BV (bounded total variation) existence for isentropic Euler:

1. Find a time-dependent lower bound on density for entropy BV solutions.

2. In a time interval t ∈ [0,T ], assume density is uniformly positive, then find
BV estimate for approximate solutions.

I will show my works in the development of both questions:

i. A sharp lower bound on density for classical solution, which helps constructing
complete singularity (shock) formation results for isentropic and
full Euler equations.

ii. BV-norm estimate for isentropic Euler equations.
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Singularity formation and lower bound on density

1. Singularity formation and lower bound on density
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Singularity formation and lower bound on density

Burgers’ equation

u(0,x)

Shock

u(1,x) u(2,x)

x

ut + u ux = 0, u(0, x) = u0(x).

Differentiate it on x,

uxt + uuxx + u2x = 0
v=ux=⇒ vt + uvx + v 2 = 0.

Denote ′ = ∂t + u∂x ,

v ′ = −v 2 ⇒ v =
v0

1 + v0t
.

v0 < 0 ⇐⇒ v → −∞ in finite time.

Compression ⇐⇒ ux < 0; Expansion (rarefaction) ⇐⇒ ux > 0.

initial data have compression somewhere ⇐⇒ shock forms in finite time.
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Singularity formation and lower bound on density

System with two unknowns

Small data problems: Solved!

Theorem (Lax ’64)

For small data solution in strictly hyperbolic system with 2 unknowns, singularity forms in
finite time if initial data include compression.

Large data problems:

Open problem:

For (large) solution of Euler equation, can one prove that singularity forms in finite time if
and only if initial data include compression somewhere?

Solved after GC-Pan-Zhu ’14.
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Singularity formation and lower bound on density

Isentropic Euler {
τt − ux = 0,

ut + p(τ )x = 0.

p = τ−γ and τ = 1/ρ.

Equivalent to
wt + c wx = 0, zt − c zx = 0

on Riemann invariants

w = u + h, z = u − h,

with h = k1 τ
−γ−12 and wave speed c = k2 τ

−γ+1
2 .
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Singularity formation and lower bound on density

Apply Lax ’64 to isentropic Euler: For y =
√
c wx & q =

√
c zx ,

y ′ = −a(ρ)y 2 =⇒ y(T ) =
y0

1 + y0
∫ T

0 a
(
ρ
(
t, x(t)

))
dt
.

x(t) is a forward characteristic, a(ρ) = Kρ
3−γ
4 , ′ = ∂t + c∂x .

Similar equation holds for q.

To prove singularity formation: One needs to show∫ ∞
0

a(ρ) dt =∞. (1)

If (1) is correct, when y0 < 0 =⇒ y breaks down.

For small data solutions, (1) is trivial, when initial density is away from zero.

However, (1) is nontrivial for large data solutions.
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Singularity formation and lower bound on density

Singularity formation for large solution: Now the open problem changes to

Is

∫ ∞
0

a(ρ) dt =∞, where a(ρ) = Kρ
3−γ
4 ? (2)

Riemann invariants are constant along characteristics, we get ρ < Constant.
Lax’s theorem directly applies to γ ≥ 3.

If 1 < γ < 3, proof of (2) is challenging because ρ might approach zero as
t →∞! (Example: interaction of two strong rarefactions.)

One needs to prove a sharp time-dependent lower bound on density.

1 < γ < 3 includes most gases. For air, γ = 1.4.

This problem is resolved in GC-Pan-Zhu ’14!
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Singularity formation and lower bound on density

Theorem (Lax ’64 & GC-Pan-Zhu ’14.)

For isentropic Euler, if C 1-norm of initial data (u0, ρ0) is bounded & ρ0 is uniformly
positive, global classical solution exists if & only if

min
x∈R

{
wx(0, x), zx(0, x)

}
≥ 0 .

From physical point of view, this theorem tells that classical solution breaks down
if & only if initial data are forward or backward compressive somewhere.

Existence part was classical result (Longwei Lin ’87).

Optimal bound: In GC ’15, I improve lower bound of density to the optimal order O( 1
1+t),

and show ux(t, x) < K before blowup for some constant K only depending on
initial data, although ux → −∞ at singularity.
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Singularity formation and lower bound on density

A short proof in GC-Pan-Zhu ’14: We first use equations of Riemann invariants

w = u + h(ρ), z = u − h(ρ),

to estimate maximum rarefaction (upper bounds on y and q). Note density
decreases after crossing rarefaction and increases after crossing compression.

y ′ = −a(ρ)y 2 , q8 = −a(ρ)q2 ,

y =
√
c wx , q =

√
c zx .

Lemma (Bounds on maximum rarefaction)

y(t, x) ≤ max
x
{0, y(0, x)} and q(t, x) ≤ max

x
{0, q(0, x)}.

By the conservation of mass τt = ux ,

2
√
c τt = 2

√
c ux = (y + q) ≤ K1 .

Then when 1 < γ < 3,

a(ρ) ≥ O(1 + t)−1 ⇒
∫ ∞
0

a(ρ) dt =∞.
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Singularity formation and lower bound on density

Full Euler equations:

Decomposition, F.John ‘74, Yang-Lin-Liu ’97, GC ’11, GC-Young ’12.

γ ≥ 3, GC-Young-Zhang ’13, (ρ < Constant).

1 < γ < 3, GC-Pan-Zhu ’14, (time-dependent lower bound on ρ).

Theorem (GC-Young-Zhang ’13 & GC-Pan-Zhu ’14)

For full Euler, when initial data (u0, τ0, S0) are C 1, τ0 is uniformly positive and entropy S0
is BV, singularity forms in finite time if

min
x

{
y(0, x), q(0, x)

}
< −N .

Here N is a positive constant. And for any ε > 0, we find stationary classical solution with

min
x

{
y(0, x), q(0, x)

}
= −N + ε.

Compatible to isentropic Euler: N → 0 as max
{
|S ′0(x)|, |S ′0′(x)|

}
→ 0.
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Large BV (bounded total variation) existence

2. BV (bounded variation) norm estimate for large solutions
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Large BV (bounded total variation) existence

Large BV existence for isentropic Euler

A review on key steps in small BV theory: Glimm scheme, front tracking scheme . . .

Pairwise wave interactions: Resolved for full Euler with large solutions.
Chang-Hsiao 1979, GC-Endres-Jenssen 2012.

u ul r

u ul r

t

x

Figure : (Left) Riemann problem; (Right) Pairwise wave interactions

(Key step) Total variation bound on approximation solutions:

Total variation + C · Interaction potential decays
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Large BV (bounded total variation) existence

Large BV existence: How to get a BV bound?

For isothermal gas (γ = 1), large BV existence is given by T.Nishida ’68.

Total variation bound was found by observing a scalar (TVD) function log ρ,
whose spatial Total Variation Diminishes after pairwise interactions.

TVD functions exist in all large BV existence results: Temple system...

Question 1: Is there a TVD function for isentropic gas (γ > 1)?

We gave the following sad answer

Theorem (GC-H.K.Jenssen, ’13)

Isentropic gas with γ > 1 doesn’t admit non-constant C 2-smooth scalar TVD function.



Large solutions for compressible Euler equations

Large BV (bounded total variation) existence

Large BV existence: How to get a BV bound?

For isothermal gas (γ = 1), large BV existence is given by T.Nishida ’68.

Total variation bound was found by observing a scalar (TVD) function log ρ,
whose spatial Total Variation Diminishes after pairwise interactions.

TVD functions exist in all large BV existence results: Temple system...

Question 1: Is there a TVD function for isentropic gas (γ > 1)?

We gave the following sad answer

Theorem (GC-H.K.Jenssen, ’13)

Isentropic gas with γ > 1 doesn’t admit non-constant C 2-smooth scalar TVD function.



Large solutions for compressible Euler equations

Large BV (bounded total variation) existence

Question 2: Is that possible to find a BV bound for large solutions by the existing
frameworks? Such as front tracking scheme...

Answer is negative:

Theorem (Bressan-GC-Zhang ’14)

For any non-constant C 1 function φ(u, τ ) and T > 0, we find a front tracking
approximate solution,

TVt=T φ = +∞ while 0 < M1 < TVt=0 φ < M2,

with density uniformly away from vacuum.

Other BV norm instability:

T.-P. Liu, J. Smoller ’80: when solution is close to vacuum.

C. Tsikkou ’09: p-system for elasticity with piecewise linear pressure.
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Large BV (bounded total variation) existence
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Figure : Black waves form a periodic pattern: Shocks (solid) and rarefactions (dash).

“red” waves in the left picture are a large number of infinitesimal waves.

Wave interactions are exact. Errors are allowed in wave speeds.

Strength of red waves increases by a constant rate after a cycle (1∼7) .

Infinite cycles happen in finite time ⇒ Blowup can happen in finite time.

The density has uniformly positive lower bound.
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Large BV (bounded total variation) existence

Periodic pattern : Riemann invariants are u ± h(ρ).
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Figure : Interaction of two shocks. Left-most figure is in (x , t) plane. Other figures show three

different cases, in the (u, h)-plane. From left to right: γ > 1; γ = 1; 0 < γ < 1.
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General pressure p = p(τ ), pτ < 0, pττ > 0

Bakhvalov’s condition: 3p2ττ ≤ 2pτpτττ for all τ > 0

is satisfied ⇒ global BV existence; otherwise our (BV blowup) example exists.
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Conclusions and further discussion

Conclusions

We completely resolved the singularity formation for isentropic and
non-isentropic Euler equations, by extending the theory of Lax. One of the
main steps is to find a sharp lower bound on density for classical solution.
The next step is to find a lower bound on density for BV solutions.

We showed that front tracking scheme fail to give useful estimate to large
solutions for general Cauchy problem for isentropic Euler equations, even
when density is away from vacuum.

This is not the end of the world. The hope is to find a better approximation
taking account of exact wave speeds. Our examples point out the main
obstacle for large BV existence.

Thank You!
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