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ABSTRACT
Fire metrics such as fire front location and rate of spread (ROS) are critical to un-
derstanding the behavior of prescribed fires and wildfires. This paper proposes a
new method for prescribed grass fire evolution mapping and ROS measurement us-
ing multitemporal thermal orthomosaics collected by a small fixed-wing Unmanned
Aircraft System (UAS) at low altitudes. The proposed method provides a low-cost,
safe, and effective solution for active grass fire monitoring and fire metric measure-
ment in areas that may be challenging for a typical rotor-wing UAS to cover due
to endurance and size constraints. The proposed method is demonstrated using a
prescribed grass fire data set collected by the KHawk fixed-wing UAS over a 13
ha. Kansas tallgrass prairie field on October 8, 2019. Repeat-pass thermal images
collected by the KHawk UAS during about 10 minutes of the burning were grouped
and processed to produce multitemporal orthomosaics with a spatial resolution of
about 0.23 m and a horizontal position error of about 1.5 m. The resulting ortho-
mosaics were further processed for fire front extraction and the measurement of fire
front location and ROS. The head fire ROS of this grass burn was observed to be
between 0.2-0.4 ms−1 with a mean value of 0.27 ms−1.

KEYWORDS
Unmanned aircraft system (UAS), grass fire monitoring, prescribed grass fire rate
of spread, thermal remote sensing, thermal imagery, hazard monitoring.

1. Introduction

Accurate understanding of wildland fire behavior in different environmental and fuel
contexts is critical to prescribed fire planning and operation as well as wildfire pre-
vention and mitigation. The fire front location and rate of spread (ROS) are two
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important fire behavior metrics that are very useful to fire ecology researchers (Bid-
well and Engle 1992) interested in understanding the impact of fuel and vegetation on
fire evolution, fire modeling researchers (Hu et al. 2021) who may focus on develop-
ing accurate fire spread models, and operational fire forecasting researchers (Gollner
et al. 2015) interested in building accurate predictive fire models. Many of these above
applications often use fire ROS measurements for fire spread modeling and evaluation
and therefore, value the accuracy and scale of these measurements over the processing
time.

Most remote sensing-based fire location and ROS measurements are performed by
post-processing satellite or airborne images acquired during the fire activity. Histor-
ically, satellites have been a major source of data for fire mapping, including the
detection of active fires and hot spots (Wilfrid et al. 2008; Csiszar, Morisette, and
Giglio 2006; Csiszar et al. 2014), fire spread modelling (Coen and Schroeder 2013),
and fire damage assessment (Badarinath, Sharma, and Kharol 2011). However, due
to coarse spatial resolutions (250 - 1000 m) and slow revisit times (1 day or more),
satellite data may not be effective in measuring fire ROS at fine spatial and tempo-
ral scales, especially for prescribed fires that are usually completed within hours or
wildfires that are contained within a day. Additionally, it is suggested that spatial
and temporal resolutions of 10 m and 10 min are desired for reliable data-enabled
operational wildfire spread modelling and forecasting (Gollner et al. 2015). This has
encouraged the use of other remote sensing sources such as manned aircraft for fire
ROS measurements.

Repeat-pass thermal infrared imagery collected by Pacific Southwest Research Sta-
tion (PSW) FireMapper fire imaging system aboard a manned aircraft were processed
post-fire for the measurement and analysis of wildfire ROS in the San Dimas forest in
2002 at a spatial scale of 101−103 m, which was validated using ground-observations of
similar fields from previous literature (Stow et al. 2014). A series of image processing
tools were developed for the automatic extraction of fire line parameters including, fire
line location and fire front direction using airborne multispectral images and post pro-
cessed NDVI (Ononye, Vodacek, and Saber 2007). Similarly, airborne imagery from the
King Air B200t research aircraft were used for remote measurements of fire intensity,
fire line geometry, heat and carbon fluxes during large wildland fires in Brazil (Riggan
et al. 2004). Airborne images from the Forestry Services of Castilla-La Mancha were
orthorectified post-fire to form fire isochrones which were then used to calculate the fire
location and fire ROS for forest fires (Viedma et al. 2015, 2020). In summary, manned
aircraft have been successfully used for real-time fire mapping and post-fire ROS mea-
surements since they can collect images with high spatial and temporal resolutions
(sub-meter level every few hours). However, they are limited by cost of operation,
pilot safety, and limited flexibility in flight path modifications, which has motivated
the use of Unmanned Aircraft Systems (UAS) for these applications.

UAS with low-cost multispectral or hyperspectral cameras are generally easier to
handle and can fly autonomously over fires without putting human pilots at risk, mak-
ing them an ideal platform for fire-related applications. However, since they generally
fly at low altitudes (mostly ≤120 m above ground level in USA due to FAA regula-
tions), fire generated turbulence and smoke can have an impact on their safety and
data quality if not well planned (Valero et al. 2021). Although UAS has been used for
many wildland fire applications, including vegetation impact mapping (McKenna et al.
2017; Reilly et al. 2021; Samiappan et al. 2019; Fraser, Van der Sluijs, and Hall 2017),
fire ignition (Beachly et al. 2017), and fire detection (Yuan, Zhang, and Liu 2015;
Gowravaram et al. 2021), its use in fire ROS measurements is still limited in existing
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literature. The few UAS-based fire ROS measurements to date have been restricted
to small spatial scales (about 1 ha. or less) and hovering multi-rotor UAS likely due
to safety concerns for operation in dangerous fire environments. For example, multi-
spectral images from a multi-rotor UAS were used for the estimation of complex fire
progression, ROS, and spread direction in prescribed fires, where the UAS was posi-
tioned at a fixed location while capturing a fire in a spatial scale of 0.01 - 1 ha (Moran
et al. 2019). The use of autonomous fixed-wing UAS for mapping and measurement
of fire ROS is lacking, which we aim to address in this paper.

This study introduces a novel method for fire evolution mapping and fire ROS mea-
surement using a small fixed-wing UAS operating at low altitudes above the burning
field. The proposed method is demonstrated using a data set collected by a KHawk
fixed-wing UAS while observing a prescribed burn of a tallgrass prairie in Anderson
County Prairie Preserve, Kansas. The main contributions of this work include:

(1) A new and effective method for accurate recapturing of prescribed grass fire
evolution using multitemporal thermal orthomosaics generated by UAS images
acquired at low-altitudes.

(2) A UAS thermal data set over a prescribed tallgrass fire in Kansas, which in-
cludes the multitemporal thermal orthomosaics and associated weather informa-
tion (https://cusl.ku.edu/Flight Log).

(3) Comprehensive measurement, analysis, and validation of fire ROS in a typical
tallgrass prairie, which has not been sufficiently addressed in existing remote
sensing literature.

(4) Discussions, lessons, and recommendations for safe and efficient operation of
small fixed-wing UAS for fire observation.

Through our work, we aim to provide accurate thermal maps and ROS measure-
ments of a tallgrass fire that can be directly used by fire modelling researchers (Hu,
Sun, and Ntaimo 2012; Hu et al. 2021) who are interested in understanding grass fires,
fire and tallgrass ecologists, land managers, and the prescribed grass fire community.
Other UAS and remote sensing researchers can use our methods, lessons learned, and
shared data as a resource to develop their systems and to set up future collaborations.

2. Prescribed Fire and Data

This section provides detailed descriptions of the prescribed fire event, including the
aerial data collected by a fixed-wing UAS, and wind data collected by a ground weather
station during the burn.

2.1. Prescribed Fire Experiment

A prescribed grass fire was conducted on October 8, 2019, between 11:38 AM and 12:25
PM (Central Daylight Time (CDT)) at the Anderson County Prairie Preserve, Kansas
(38.183347◦,−95.279201◦), shown in Fig. 1. This site is a rectangular grassland field
approximately 530 m × 250 m, relatively flat (1-3 % slope), spanning three soil types
(SSURGO Soils: Clareson complex, Wagstaff silty clay loam, Kenoma silt loam) with
fine fuel vegetation cover dominated by C4 tallgrasses and a mixture of herbaceous
forbs and legumes (shown in Fig. 2). The mean wind during the burn was around
6.26 ms−1 from the south based on the ground weather station measurement at ∼ 1.9
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m above the ground. The ambient temperature was around 73◦ F while the relative
humidity was around 41 %. A small (approx. 0.1 inch) rain event was recorded in
the area on October 5, 2019 (Mesonet 2021). This prescribed burn was performed
by the Kansas Biological Survey (KBS) for grassland ecosystem management using
a ring pattern ignition with two teams starting around the midpoint of the northern
boundary (due to south wind). Each team then moved in opposite directions along
the boundaries before meeting around the midpoint of the southern boundary. The
fire propagated towards the center of the field from all the boundaries.

Figure 1. Anderson County Prairie Preserve: fire field (black border) and weather station (red circle) labelled.

Figure 2. Anderson County Prairie Preserve ground picture.

2.2. KHawk UAS Data

Thermal remote sensing data was collected by a KHawk 55 thermal fixed-wing UAS
during the Anderson County fire. The KHawk 55 thermal UAS is a low-cost multispec-
tral remote sensing platform developed by researchers at the CUSL at the University
of Kansas, shown in Fig. 3. It is equipped with a Ublox M8P Here GPS and a Pixhawk

4



Cube autopilot (ArduPilot 2021) , which can support both manual and autonomous
flight. The detailed specifications are provided in Table 1.

Table 1. KHawk 55 Thermal UAS Specifi-

cations.

Description Value

Take-off Weight 2.5 kg
Wingspan 1.4 m

Cruise Speed 20 ms−1

Maximum Endurance 30 min
Typical Altitude 120 m
Spatial Resolution 0.23 m

(at 120 m above the ground)

A FLIR Vue Pro R camera is used for thermal image acquisition and its specifica-
tions are listed in Table 2. These images were acquired in a 14-bit TIFF format and
geotagged real-time through the MAVLink connection with the Pixhawk autopilot.

Table 2. FLIR Vue Pro R Thermal Cam-
era Specifications.

Description Value

Spectral Bandwidth 7.5 to 13.5 µm
Sensor Resolution 640× 512 pix

Field-of-View (FOV) 69◦ × 56◦

Frame Rate 1 Hz

Figure 3. KHawk 55 Thermal UAS (L) and its partial flight path during the fire (R).

The KHawk thermal 55 UAS was deployed and the collected thermal images from
12:06:05 PM to 12:17:47 PM were processed and used in this paper. The UAS was pro-
grammed to fly autonomously at around 120 m above the ground to collect repeat-pass
time-sequential images which can be used to generate multitemporal orthomosaics.
Two pairs of repeat-pass thermal images with their respective time stamps observing
the same area are shown in Fig. 4 as an example, where the top images are acquired
one second apart from one UAS flight loop and bottom images are from a different
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flight loop. The UAS flew multiple loops over the field at an approximate interval of
about 2 min such that the set of images captured within each loop can be used to
generate one orthomosaic. Only images from straight path with wings level flight are
used for orthorectification. The majority of the UAS flight path with effective image
acquisition overlaid on a National Agriculture Imagery Program (NAIP) image (spa-
tial resolution of 1 m) is shown in Fig. 3. The NAIP image was used as a reference
image for orthomosaic registration, which is further discussed in Sec. 4.1.

Figure 4. Example KHawk thermal repeat-pass image pairs along the west boundary: top and bottom images

are from different UAS flight loops.

2.3. Ground Wind Measurement Data

A Campbell Scientific CSAT3B wind anemometer was placed about 20 m east of the
eastern boundary (labelled in Fig. 1) at a height of ∼ 1.9 m from the ground to
measure the 3D wind speed and temperature at an update rate of 100 Hz.

Note that although the fire ignition and burning lasted for about 43 minutes, only
10 min of fire and wind data from 12:06:50 PM to 12:17:47 PM were used for analysis
in this paper. This is due to UAS battery constraints, field planning limitation, and
safety precautions for UAS operations in close vicinity of fires and fire generated smoke.
Fig. 5 shows the measured wind direction and 2D horizontal wind speed (smoothed
by a 20-sec moving average filter) during this time. The prevailing wind was from
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Figure 5. Wind direction and 2D horizontal wind speed between 12:06:50 PM and 12:17:47 PM from Camp-

bell Scientific anemometer.

the south at an average speed of 6.26 ms−1 with an exception around 380 seconds
(about 12:13:10 PM) when a brief change in direction occurred as the fire front passed
the weather station, and caused a temporary change in the local wind direction (see
orthorectified images shown in Sec. 4).

3. Methods

A new method is introduced in this section for fixed-wing UAS-based fire evolution
mapping and ROS measurement. The proposed method utilizes UAS acquired repeat-
pass thermal images to generate multitemporal orthomosaics, which can be used to
represent the dynamic evolution of a fire at regular time intervals. The derived fire
evolution map can then be used for the ROS calculation at different time stamps and
locations. The main components of this method (Fig. 6) include 1) multitemporal
orthomosaic generation, 2) fire evolution mapping, and 3) fire ROS calculation.

3.1. Multitemporal Orthomosaic Generation

The first step of this method is to generate multitemporal orthomosaics using UAS
collected repeat-pass thermal images. Each orthomosaic corresponds to a specific in-
terval of time and is generated using multiple images belonging to a single UAS flight
loop. Here, a flight loop is defined as the UAS path that can provide a complete cover-
age of the field once. These orthomosaics capture the fire evolution at different stages
and can be combined to form a fire evolution map. This process can be formulated as
below.

Given a UAS flying m loops over a fire field acquiring n geotagged images per
loop, Ib = {i1b, i2b, ....inb} with corresponding timestamps, Tb = {t1b, t2b, ....tnb}, where
b refers to the loop index. A total of m orthomosaics, Ob = {O1, O2....Om} can be
generated by georeferencing and stitching all the images corresponding to each loop as
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Figure 6. Flow diagram for fixed-wing UAS-based fire evolution mapping and ROS calculation.

shown below.

I1 = {i11,i21, ....in1} → O1

I2 = {i12,i22, ....in2} → O2

.

Im = {i1m,i2m, ....inm} → Om

(1)
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Each orthomosaic, Ob contains information from n images with n timestamps from
t1b to tnb. Generation of such orthomosaics is illustrated in the top block of Fig. 6. Due
to possible spatial uncertainties and misalignments, each orthomosaic is recommended
to be registered with a high-accuracy reference image before they are used for any fire
metric measurements.

3.2. Fire Evolution Mapping

Registered orthomosaics can be used to generate a fire evolution map that contains
multiple fire fronts from each orthomosaic using two steps, 1) fire perimeter extraction
and 2) fire front delineation. The fire perimeter, f ′ is defined as the entire outer edge
of a fire (USDA 2021), including the leading and trailing edges, where the leading
edge represents the fire front. The fire perimeter can be extracted from a thermal
orthomosaic using temperature or intensity-based thresholds as shown below.

f ′
b =

{
1, if O′

b ≥ α

0, otherwise,
(2)

where α is a temperature or intensity-based threshold.
The extracted fire perimeter is usually in the form of discrete points, which is not

desirable for further fire ROS spread vector determination. The next step is to delineate
fire fronts, fb from each orthomosaic, where continuous curves are created from discrete
pixels along the leading edge of the fire perimeter, f ′

b. A manual delineation procedure
can be used to connect these discrete pixels to result in continuous fire fronts (Stow
et al. 2019). The final delineated fire fronts corresponding to each orthomosaic can be
added to form the fire evolution map, F , such that F = f1+f2....+fm. An illustration
of the fire evolution mapping procedure for orthomosaics O1 and Om is shown in the
middle block of Fig. 6.

3.3. ROS Measurement

The final step of this method is the fire ROS calculation. The calculation of fire ROS
between consecutive fire fronts, fb and fb+1, requires the distance and time-lapsed be-
tween them. First, p equally-spaced points are selected such that fb = {A1, A2, ...Ap},
where Ap is the location of the pth point along fb.

Next, the spread vectors, A⃗B can be drawn along the direction perpendicular to
the local curve from Ap until they intersect the consecutive fire front at B along fb+1.
Note that other approaches for fire spread vector determination exist in the literature
including drawing the vector along the visual and wind direction trends, however, no
substantial differences were observed between these different approaches (Stow et al.
2019). Finally, the time interval between the individual images ∆T can be calculated.
The ROS can be calculated using the following equation.

ROSA =
∥A⃗B∥
∆T

(3)

The bottom part of Fig. 6 illustrates the ROS calculation between two fire fronts
corresponding to orthomosaics I1 and Im.
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4. Results

The proposed method is implemented and validated using the Anderson County fire
data set and corresponding results are presented in this section.

4.1. Multitemporal Orthomosaic Generation

Repeat-pass thermal images collected by the KHawk thermal UAS from 12:06:50 PM
to 12:17:47 PM are used to generate four multitemporal orthomosaics (O1,O2,O3,O4),
as shown in Fig. 7. The Agisoft Photoscan Pro software was used for the orthorectifi-
cation process. It is known that orthorectifying thermal images can be challenging due
to low image resolution and contrast in the thermal band (Yang and Lee 2019). To
overcome this challenge, the FLIR Vue Pro R camera was set at the 14-bit tiff mode
such that the resulting images had the least compression and highest radiometric res-
olution. Additionally, since these thermal images contained fire pixels, there was a
sufficient contrast for feature matching. Therefore, the overall process for the thermal
orthomosaic generation in the Agisoft Photoscan software was similar to that of RGB
images. Each orthomosaic covers the same area at spatial scales of order 104 m2 with
a temporal resolution about two minutes. Important properties including number of
images used and time-interval for each orthomosaic are listed in Table 3. Note that not
all the images within the start-end time frame were used for stitching and some images
were manually excluded due to blurriness or when the UAS was not flying straight and
wings-level. O2 (top right) has some stitching errors due to a few improperly aligned
images in areas where the fire is not present, caused mainly by slow and inaccurate
UAS flight path adjustments during the burn.

Table 3. Multitemporal Thermal Orthomosaic Properties.

Orthomosaic Number of Images Start-End Time (CDT)

O1 119 12 : 06 : 50− 12 : 09 : 18 PM
O2 103 12 : 09 : 34− 12 : 10 : 44 PM
O3 96 12 : 12 : 41− 12 : 15 : 02 PM
O4 85 12 : 15 : 27− 12 : 17 : 47 PM

The generated orthomosaics are co-registered with a NAIP image with a spatial
resolution of 1 m using the ArcGIS Georeferencing tool. The NAIP image was acquired
on June 30, 2019 and has a horizontal position accuracy of about 6 m at a confidence
level of 95% (USDA 2009). Multiple control point pairs are manually selected from
each KHawk orthomosaic and the NAIP image such that they are spread out across
the whole field. Table 4 shows the registration attributes for each orthomosaic where
the registration errors for all the orthomosaics are at similar levels (about 1.5 m).
Another observation is that only 5 and 7 control point pairs are used for O2 and O4 as
compared to 10 pairs for the other two. This is because the images from the UAS flight
loop used for O2 were not very stable due to turbulence experienced by the UAS and
caused some stitching errors. The fire and its surrounding regions (smoke, hot regions,
etc.) occupy a large portion of the field in O4 preventing the visibility of many feature
points (can be seen in the top and bottom right of Fig. 7).
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Figure 7. Multitemporal thermal orthomosaics: O1 (top left), O2 (top right), O3 (bottom left), and O4

(bottom right).

Table 4. Image-to-Image Registration Attributes for Multitemporal Thermal Orthomosaics Using 1 m

NAIP Imagery.

Orthomosaic Spatial Resolution (m) Control Point Pairs Transformation Type RMSE (m)

O1 0.23 10 Affine 1.32
O2 0.23 5 Affine 1.59
O3 0.23 10 Affine 1.49
O4 0.23 7 Affine 1.52

4.2. Fire Evolution Mapping

The fire perimeter is extracted from all the orthomosaics using the standard deviation
data classification method in ArcGIS Pro. With class breaks set at one-third of the
standard deviation of each orthomosaic, the range of values corresponding to the
fire perimeter is determined through visual inspection. It is found that in all the
orthomosaics, the fire perimeter pixel values are around 90% of the maximum intensity
pixel value in the orthomosaic. Fig. 8 shows the fire perimeter extracted from each
orthomosaic.

The fire front isolated from each orthomosaic corresponds to the time interval asso-
ciated with that orthomosaic (Table 3). The delineated fire fronts are combined into
one image, called the fire evolution map, shown in Fig. 9. Here, fire fronts from each
orthomosaic are shown in different colors and their corresponding time-intervals are
labelled. It is worth mentioning that the time-intervals of these fire fronts are subsets
of time-intervals associated with their corresponding orthomosaics. The arrows in this
figure represent spread vectors, which are discussed in more detail in the next subsec-
tion. The absence of fire fronts along the northern boundary during this time series is
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Figure 8. Extracted fire perimeter from multitemporal thermal orthomosaics: f ′
1 (top left), f ′

2 (top right),

f ′
3 (bottom left), and f ′

4 (bottom right).

due to the strong prevailing south wind.

Figure 9. Fire evolution map.
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4.3. ROS Measurement

Equally-spaced sample points (every 10 m) are selected along each delineated fire front
to calculate the ROS. Then spread vectors are drawn from them in the direction of
the local normal to the curve, fb and are extended until they intersect the consecutive
fire front, fb+1. These vectors depict the direction of fire spread from each point.
The distance between the starting and ending points of the spread vector can then
be calculated and used in the ROS calculation for a given point in fb. Note that the
vectors may need to be manually adjusted for cases where two or more vectors intersect
or collide. This could occur as a direct consequence of the manual delineation when
spread vectors from fb are drawn in opposite directions or point to the same location
in fb+1. The ROS for each point is calculated by dividing the distance by the time-
lapsed between them. The time-lapsed is calculated by subtracting the timestamps
corresponding to individual images respectively.

The obtained fire ROS measurements are analyzed statistically in different regions
based on the location and the fire spread direction. These regions include West (fire
spread towards the east), South West (fire spread towards the north/north east), South
East (fire spread towards the north/north west), and East (fire spread towards the
west). These spread directions are mostly influenced by the prevailing wind direction
(from south to north from Fig. 5) and the fire ignition sequence (ring-fire pattern
starting from the northern boundary), since the study area is relatively flat with a
uniform fuel load. The fire fronts from each map intersect the southern boundary at
different locations, indicating that the fire setting is still in progress (Fig. 9).

The ROS measurements in the divided subgroups are visualized in polar plots,
shown in Fig. 10. The statistics are further shown in Table 6-8, where the ROS in the
South West and South East boundaries have a mean value of 0.26 ms−1 and 0.28 ms−1

respectively. These values are substantially higher than the West and East boundaries
whose mean ROS values are observed to be 0.06 ms−1 and 0.11 ms−1. The maximum
ROS is found to be 0.4 ms−1 in the South West region. Given the wind direction
(mostly south to north) and these observed trends, the fire front from the southern
boundary can be treated as the head fire while the fire fronts from the east and west
can be treated as the flank fire. Based on the analysis shown in this section, the mean
head fire ROS is found to be 0.27 ms−1 which falls within the ROS range observed in
similar tallgrass prairies in north central Oklahoma (Bidwell and Engle 1992).

Table 5. ROS Statistics in the West Region.

Average Lapsed Time ROS Statistics (ms−1)

Min Mean Max Std

f2-f3 (178.3 s) 0.05 0.08 0.1 0.01
f3-f4 (163 s) 0 0.03 0.07 0.02

Cumulative

0 0.06 0.1 0.03

4.4. ROS Uncertainty Analysis

The objective of this subsection is to estimate the accuracy of the fire ROS calculated in
Sec. 4.3. The ROS measurement accuracy mainly depends on the spatial and temporal
uncertainties in the multitemporal orthomosaics, as shown in (3). These factors are
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Figure 10. ROS in W (top left), E (top right), SW (bottom left), and SE (bottom right) regions.

Table 6. ROS Statistics in the South West Region.

Average Lapsed Time ROS Statistics (ms−1)

Min Mean Max Std

f1-f2 (80.8 s) 0.18 0.25 0.32 0.05
f2-f3 (269.4 s) 0.16 0.22 0.26 0.04
f3-f4 (140.8 s) 0.23 0.28 0.4 0.04

Cumulative

0.16 0.26 0.4 0.06

Table 7. ROS Statistics in the South East Region.

Average Lapsed Time ROS Statistics (ms−1)

Min Mean Max Std

f3-f4 (118 s) 0.12 0.28 0.35 0.07

Table 8. ROS Statistics in the East Region.

Average Lapsed Time ROS Statistics (ms−1)

Min Mean Max Std

f3-f4 (178 s) 0.04 0.11 0.17 0.05

discussed below.

(1) Time uncertainty of the images: Each multitemporal orthomosaic is generated
using n images, each having its own timestamp. The main source of uncertainty

14



comes from the selection of specific individual images corresponding to the start-
ing and ending of the fire spread vector between consecutive fire fronts. In this
paper, a time accuracy of ±1 second was observed for the fire ROS calculation
since the FLIR camera was set to sample at 1 Hz. This has a trivial impact on
the final ROS calculation because the time difference between any two fire fronts
were around or more than 120 seconds.

(2) Spatial uncertainty of the multitemporal orthomosaics: The ROS is directly in-
fluenced by the spatial uncertainties of the multitemporal orthomosaics. For
example, given a horizontal position error of δX for each of the consecutive or-
thomosaics, the ROS during a time interval ∆T can vary as much as 2δx

∆T . Given
the δX of about 1.5 m (Table 4) for these thermal orthomosaics and an assumed
∆T of about 120 seconds between consecutive fire fronts, the ROS uncertainty
can be calculated as ±0.025ms−1, which is about 9 % of the mean head fire
ROS.

In addition to the above uncertainty analysis, a further validation is conducted using
a different fire observation video from a DJI Phantom. This DJI Phantom quadrotor
equipped with an RGB camera was launched at 12:20:28 PM (approximately 168 sec-
onds after the last KHawk fixed-wing view of the fire for continuous aerial observation)
and manually operated over the north east boundary of the fire field. The fire evolution
observed by the DJI at 12:22:03 PM and 12:23:42 PM is shown in Fig. 11. From this
figure, fire spread predominantly from the south to the north before consuming the
entire field can be observed, confirming the head fire in f4 travelled a south to north
trajectory shown in blue in Fig. 9.

Figure 11. Fire observations from DJI Phantom RGB video with time stamps in CDT.

For the quantitative validation, a fire front, fDJI is extracted from a manually
registered DJI image at 12:22:03 PM (left frame in Fig. 11 before registration) and
is used as a ground truth to validate the ROS of the head fire calculated in Sec. 4.3.
The extracted fire front after registration is shown as the red curve in Fig. 12, which
shows the head fire evolution from f4 and DJI fire front fDJI overlaid on the NAIP
image. The objective of this analysis is to compare the calculated mean head fire ROS
of 0.27 ms−1 and the ROS derived between the f4 head fire at 12:17:32 PM and the
fDJI at 12:22:03 PM. It is worth mentioning that the DJI frame at 12:22:03 PM was
selected due to the availability of landmarks in the image FOV.

This analysis supports that the head fire in f4 would reach fDJI at the expected
time if it evolved at a ROS of 0.26 ms−1, which is 0.01 ms−1 less than the calculated
mean head fire ROS. This error falls within the calculated uncertainty window. Further
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anecdotal validation was given by the KBS prescribed fire crew, who confirm that the
fire in the area between f3 and fDJI would be expected to evolve with a fairly constant
ROS given the uniform fuel loads, wind and slope distributions at that location during
the described burn event.

Figure 12. ROS validation: fire evolution between head fire from f4 and fDJI (from left frame in Fig. 11).

5. Discussions and Recommendations

The effectiveness of the proposed method is dependent on several factors from the
UAS path planning to the final ROS calculation. Some of these critical factors are
discussed in this section.

5.1. Fixed-Wing UAS Mission Design for Fire Observation

Fast evolving processes like fires pose special challenges for fixed-wing UAS based re-
mote sensing because the environment constantly changes spatially and temporally.
To monitor such processes, the UAS has to fly multiple loops over the same field at
regular time intervals for repeat-pass image acquisition, assuming that the FOV of the
UAS camera cannot cover the whole field. During this prescribed fire experiment, the
fixed-wing KHawk 55 thermal UAS was programmed to fly an adjustable racetrack
type flight pattern with decreasing sizes over time based on prior knowledge and hu-
man ground observation of the fire evolution. The work presented in this paper lays
a good foundation for future fixed-wing UAS missions for autonomous fire monitor-
ing and real-time fire metric measurements. Based on lessons learned in this paper,
the following recommendations are provided for more effective fixed-wing UAS path
planning for fire evolution mapping and ROS measurements.

(1) UAS cruise altitude: The UAS flight altitude needs to be carefully selected to
reduce the impact of the fire-generated turbulence and smoke on the image
quality. In this paper, the KHawk UAS was flown at 120 m above ground such
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that it was not heavily impacted by fire-generated turbulence or smoke. This
was partially due to strong winds (∼ 6 ms−1 from south) which blew away most
of the smoke from the UAS flight path directly above the fire.

(2) UAS flight path: Cross-wind flight path is suggested on windy day, such that
the UAS ground speed can be maintained throughout the mission for image
acquisition at a constant spatial sampling distance.

(3) UAS flight loops: The UAS needs to cover the study area repeatedly at regular
time intervals. It is highly recommended that the UAS flies wings-level and
straight over the study area for high-quality image collection and accurate image
orthorectification. The UAS can turn outside the perimeter of the fire field and
return to a stable and wings-level condition as it covers the fire.

(4) Longitudinal and Lateral image overlapping constraint: Maintaining a desirable
longitudinal and lateral overlapping percentages between images is important
for the accurate georeferencing and orthorectification. The Agisoft Photoscan
Pro software recommends a minimum of 60 % and 70 % for longitudinal and
lateral directions respectively. Satisfying these requirements can be challenging
due to limited availability of real-time fire information and safety precautions for
the UAS. The effect of sub-optimal lateral overlapping can be seen in O2 (the
top right of Fig. 7). The images used to stitch this orthomosaic had less lateral
overlapping (< 70 %) near the bottom left and top right areas (holes can be seen
in these areas) which impacted the quality of the orthomosaic. This is due to
limited real-time fire information and ineffective path planning during the fire
burning.

5.2. Effect of the Camera and Image Processing on Fire Evolution
Mapping

The accuracy of the derived fire evolution map is highly affected by the imaging sensor
and its associated image processing techniques. For fire observation, thermal images
are highly preferred due to its ability, 1) to see through smoke and 2) easily differentiate
fire regions and hot spots from the surroundings. In this study, we observed that the
selected FLIR thermal camera provides high-quality data for fire evolution mapping
and ROS measurement of tallgrass prescribed fires.

Unlike a general orthorectification process, which georeferences a set of images and
stitches them, the multitemporal orthomosaic generation method first segregates the
images into different groups based on the time they were acquired and then per-
forms georeferencing and orthorectification for each group separately. Selection of these
groups can be critical to the accuracy of the resulting orthomosaics, since the fire is
constantly evolving. The fire observed by the KHawk UAS remained about the same
along the longitudinal direction within a few seconds but changed along the lateral
direction in between two flight lines, which can cause some errors in the orthomosaics.
To minimize this problem, multiple images within one group that contain the fire at
the same location need to be excluded from stitching. Additionally, images are rec-
ommended to be stable (no blurring) and nadir-facing for better spatial and stitching
accuracy and quality, which can be challenging for some UAS data due to possible
fire-generated turbulence. The orthomosaics shown in Fig. 7 are generated by careful
selection and manual removal of images during each stitching process (Table 3).
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6. Conclusions & Future Goals

This paper described a low-cost, safe, and efficient method for fire evolution map-
ping and ROS calculation using thermal imagery collected by a fixed-wing UAS. The
method was demonstrated using the KHawk UAS repeat-pass thermal images of a
prescribed fire (530 m × 250 m) in Anderson County, Kansas, where the fire evolution
map and associated fire ROS were calculated using four multitemporal orthomosaics
at regular time intervals (about 2 minutes). The head fire ROS was observed to be
within the range of 0.2-0.4 ms−1 with a mean of 0.27 ms−1. Based on our knowledge,
this paper provides the first remote sensing based measurement of fire ROS in tallgrass
prairie in the Midwest USA. Therefore, the derived fire ROS statistics can serve as a
useful reference for future prescribed and wildfires in similar grasslands.

Future goals for fixed-wing UAS based fire evolution mapping and ROS measure-
ment include, 1) near real-time fire map generation, ROS measurement, and data
transfer for fire situation awareness, 2) real-time UAS path adjustments based on fire
spread behavior, 3) machine learning-based automatic fire front delineation, and 4)
integration of cm-level RTK GPS on-board the UAS and use of ground control point
(GCP) for improved orthorectification.
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