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ABSTRACT

In Spring 2020, the need for redesigning online assessments to preserve integrity

became a priority to many educators. Many of us found methods to proctor exams

using Zoom and proctoring software. Such exams pose their own issues. To reduce the

technical difficulties and cost, many Zoom proctored exam sessions were shortened;

to create summative assessments we supplemented the short proctored sessions with

short unproctored sessions. In the aftermath of the pandemic, the method of creating

a large volume of exam variants is helping us design mastery-based exams. We review

the mathematics behind choosing the size of question pools to improve integrity of

the exam. Finally we provide LATEX files for generating exam variants from the

pools.
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1. Introduction

One of the traditional methods of mitigation for academic dishonesty is creating as-

sessment variants where each exam has different questions from the others around

them. This, typically, entails creating a pool of questions for each learning goal that

are in the same level of Bloom’s taxonomy. In a lecture hall, the maximum number of

students immediately surrounding a test taker is usually considered to be four; thus

the test maker can create four versions (exam variants) of the exam and alternate

them between test takers and rows. In an online setting this maximum number can
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be the same as the entire student body in the class and for mastery-based learning

this number can be as large as the total number of times all students in the class will

take and retake the assessment. Often writing that many exam variants for larger class

sizes is difficult and that is when randomization of the pools is recommended, [2], and

the integrity of the exam becomes dependent on the maximum number of questions

that each pair of exam variants have in common. [4], [6], [7].

In this paper we explain the problem using examples, showing how it can be viewed

as a combinatorics problem. We describe the mathematics in the general case, and, in

Theorem 6, give the existence of sets of assessment variants, overlapping in at most

two questions, in terms of the size of the question pools. We provide LATEX files to

generate a maximum number of assessment variants in a few cases.

We are hoping the audience for this paper will include any STEM educator or

LATEX user, and the mathematics is explained for a general audience. To explain the

importance of methodical use of question pools, we start with an example.

Figure 1. Example 1: Nature 101, Quiz 1, 4 Learning objectives.

Note that each question is labeled by bij where i is the pool index and j + 1 is the order of the question in the

corresponding pool.
Learning objective 1: Knowing your Sky Learning objective 2: Knowing your Hiking Choices

Question Pool 1 (B1) Question Pool 2 (B2)

(b10) Why is the sky blue? (b20) Name 3 national parks.

(b11) What is the Big Dipper? (b21) Name 3 mountain ranges in US.

(b12) What type of clouds are rain clouds? (b22) Name 3 of the Great Lakes.

Learning objective 3: Knowing your Birds Learning objective 4: Knowing your Camping Choices

Question Pool 3 (B3) Question Pool 4 (B4)

(b30) Name 3 bird species local to Kansas. (b40) Where is the best camping site near you?

(b31) Name 1 bird that remains in Kansas over the winter. (b41) What do you need to pack for camping?

(b32) Name 3 yellow birds in Kansas. (b42) When is the best time to go camping?

Figure 2. Example 1: An example of a student quiz. (Quiz variant {b10, b22, b30, b41}.)

Exam 1, Nature 101 Name:

1. Why is the sky blue? 3. Name 3 bird species local to Kansas.

2. Name 3 of the Great Lakes. 4. What do you need to pack for camping?

Example 1. A professor is planning to assess students’ learning in four different

learning objectives. That is, any quiz variant contains four questions each from one

of the four distinct learning objectives; see Figure 1. The professor has 9 students; to

ensure integrity they want each two students to have quizzes with no common ques-

tions. To create 9 quiz variants with no common questions, each pool of questions has

to have 9 questions. If the professor allows each pair of quiz variants to have exactly

one question in common, they only need to create 3 questions in each pool. For ex-

ample, the 9 quiz variants can use the following sets of questions: {b10, b20, b30, b40},
{b11, b21, b31, b40}, {b12, b22, b32, b40}, {b10, b21, b32, b41}, {b11, b22, b30, b41}, {b12, b20, b31, b41},
{b10, b22, b31, b42}, {b11, b20, b32, b42}, {b12, b21, b30, b42}. (One exam variant is shown in 2)

2



2. Preliminaries

Our goal is to use mutually disjoint question pools to create assessment variants for an

assessment. Note that we are assuming that each pool of questions contains questions

that assess similar or the same learning objectives. The number of questions in an

assessment is equal to the number of question pools.

Definition 1. An assessment variant is a choice of one question from each question

pool.

To preserve the integrity of the exam, we are looking for a set V of assessment

variants where each pair of assessment variants have at most cq questions in common.

The number of students in a class should be less than or equal to the size of V . We

show a bound for the number of questions in each pool so that each pair in V have

at most one question in common. We show later in Proposition 1 that the smallest

question pool affects the number of assessment variants when the maximum number

of questions in common is one. We assume all question pools to be of the same size.

2.1. Notation and the Statement of the Main Result

Throughout this work, we are assuming an assessment contains s questions and each

question Qi is chosen from a corresponding pool (bank) of questions Bi containing

questions for the same learning goal. For now, we are assuming that all pools contain

the same number of questions, κ, and we explain why later. We also assume that each

pair of question pools are mutually disjoint.

N : Number of students in class or the number of mastery assessments needed

s : Number of questions in the assessment

cq : Maximum number of questions in common between any pair of assessment variants

κ : Number of questions in each pool

Qi : ith question of the assessment

Bi : Question pool associated with Qi

bij : jth question in question pool Bi
We can describe each assessment variant as a function that chooses a member of

question pool Bi as the ith question of that assessment: f(Qi) = bij for some j,

0 ≤ j < κ. We construct a set of such functions where the size of the set is greater or

equal to N for given κ, s, and cq.

The Main Result (Theorem 6): Let κ = pm, where p is a prime number and m

is an integer. For s ≤ κ+ 1, let {B1, B2, · · · , Bs} be s pairwise disjoint question pools

where each question pool, Bi, contains exactly κ questions. Then for cq ∈ {1, 2} it is

possible to generate κcq+1 assessment variants, where each pair of assessment variants
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has at most cq questions in common. Moreover when the number of questions in each

pool is an integer power of 2, κ = 2m, it is possible to generate κ3 assessment variants

with at most two questions in common, cq = 2, for s ≤ κ+ 2 disjoint question pools.

In Theorem 1 we also show that if each question pool in the pairwise disjoint set

{B1, B2, · · · , Bs} has κ questions, to generate κcq+1 assessment variants with maxi-

mum question intersection cq, the number of pools s cannot exceed κ+ cq.

Example 2. In Figures 3, 4, 5, 6 and 7, we illustrate five sets of five assessment

variants generated from six mutually disjoint question pools Bi where each pool has

five distinct questions in it. That is, κ = 5, s = 6 and cq = 1.

Let Fi = {fij | j ∈ {0, 1, 2, 3, 4}}, for i ∈ {0, 1, 2, 3, 4}. Each Fi contains 5 assessment

variants and each pair of these variants have only question b6i in common. An instruc-

tor can use the set union of these sets,
⋃

i∈{0,1,2,3,4}

Fi, to create an assessment for up

to 25 students where each pair of students’ exams have only one question in common.

These assessment variants each have 6 questions for 6 different learning goals in them.
Now define restrictions of a set of exam variants to one fewer question

to be Fi|{Q1,Q2,Q3,Q4,Q5} = {fij |{Q1,Q2,Q3,Q4,Q5}|j ∈ {0, 1, 2, 3, 4}}; here each
Fi|{Q1,Q2,Q3,Q4,Q5} contains five mutually disjoint assessment variants for a 5-question
long assessment, κ = 5, s = 5, and cq = 0. F |{Q1,Q2,Q3,Q4,Q5} :=

⋃
Fi|{Q1,Q2,Q3,Q4,Q5}

contains 25 assessment variants with κ = 5, s = 5, and cq = 1.

Figure 3. Images of functions f00, f01, f02, f03, f04 make a set F0 of 5 assessment variants. Each pair of

assessment variants has only b60 in common.
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Figure 4. Images of functions f10, f11, f12, f13, f14

make a set F1 of 5 assessment variants. Each pair of

assessment variants has only b61 in common.
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Figure 5. Images of functions f20, f21, f22, f23, f24

make a set F2 of 5 assessment variants. Each pair of

assessment variants has only b62 in common.
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Figure 6. Images of functions f30, f31, f22, f33, f34

make a set F3 of 5 assessment variants. Each pair of

assessment variants has only b63 in common.
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Figure 7. Images of functions f40, f41, f42, f43, f44

make a set F4 of 5 assessment variants. Each pair of

assessment variants has only b64 in common.
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We consider some relations among the parameters s, cq, |Bi| and the number of

possible assessment variants.

Proposition 1. If V is a set of assessment variants with cq = 1 and s ≥ 2, and two

of the associated question pools have size k1 and k2, then |V| ≤ k1k2.

Proof. Assume the question pools Bn and Bm, respectively, contain k1 and k2 ques-

tions. Then each question bni in Bn can be in at most k2 assessment variants since

all assessment variants containing bni have to have different questions from Bm. This

implies that the maximum number of assessment variants cannot exceed k1 × k2.

Thus, the maximum size of a set of assessment variants with cq = 1 is bounded

by the sizes of the two smallest question pools. So there is no advantage in having

question pools of different sizes. From now on we will assume all question pools are

the same size κ.

Proposition 2. Let V be a set of assessment variants where each question pool is of

size κ and cq = c. Then |V| ≤ kc+1.

Proof. Let V be a set of assessment variants using question pools of size κ. If s ≤ c,

then the set of all possible assessment variants is at most κc. So assume s ≥ c + 1.

Then, since cq = c, each vector in B1× B2 ×· · ·× Bc+1 can be in only one assessment

variant in V. There are κc+1 vectors in B1× B2 × · · ·× Bc+1, so |V| ≤ κc+1.

Theorem 1. Let c be a positive integer. Let V be a set of κc+1 assessment variants,

where each question pool is of size κ and cq = c. Then the number of questions in the

assessment is s ≤ κ+ c.

Proof. The proof is by induction on c.

Base step c = 1. Assume the assessment has s questions, each question pool has κ

questions, and V is a set of size κ2 of assessment variants generated from these pools

with cq = 1. Let Ai` be the set of all assessment variants containing question bi` ∈ Bi.
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For fixed j 6= i each variant in Ai` must contain one of the κ question in Bj . Since

no two assessment variants share two questions, each of these κ questions can be in

at most one variant in Ai`. So Ai` contains at most κ variants. On the other hand,

V =
⋃

`∈{0,1,··· ,κ−1}

Ai` and V is of size κ2. Therefore each Ai` is exactly of size κ, and

every bjm (j 6= i) is in exactly one of the variants in Ai`.

Now fix one assessment variant, say v ∈ A10. Define a function

fv : {2, 3, . . . , s} → A11 as follows: fv(j) is the assessment variant in A11 containing the

same question bjm from pool Bj as v. The function fv is well-defined by the statement

above. It is one-to-one, because one assessment variant cannot share two questions

with v. So s− 1 ≤ κ = |A11|. So s ≤ k + 1.

Inductive step Assume true for cq < c. Let V be a set of κc+1 assessment variants

with cq = c. Let Bi, 1 ≤ i ≤ s, be the question pools for V. Since there are κ questions

in B1, there exists a question b1i ∈ B1 that is contained in κc assessment variants. Let

A1i be the set of assessment variants containing b1i. Define a set of assessment variants

by A := {v \{b1i}|v ∈ A1i}. The maximum number of common questions for each pair

of assessment variants in A is c − 1, A is of size κc, so by induction the number of

questions for A is at most κ+ c− 1. Since we removed the question pool B1 from V,

the number of questions for A is s− 1. Thus s ≤ κ+ c.

Definition 2. A maximal assessment variant formation for cq of order κ is

a set of κcq+1 assessment variants with maximum number of common questions cq,

generated from s = κ+ cq question pools where each pool contains κ questions.

Theorem 2. In any maximal assessment variation formation for cq = 1, every pair

of assessment variants share exactly one question.

Proof. Suppose f is an assessment variant in a maximal assessment variant formation

for cq = 1. For each `, 1 ≤ ` ≤ κ+ 1, let f(Q`) = b``f , that is, b``f is the question from

pool B` in f . As in the proof of Theorem 1, write A``f for the set of all assessment

variants containing b``f . Since no other assessment variant can share two questions

with f , for all i 6= j, Aiif ∩Ajjf = {f}. Thus distinct A``f \ {f} are disjoint. So

κ2 = |V | ≥

∣∣∣∣∣
κ+1⋃
`=1

A``f

∣∣∣∣∣ = 1 +

κ+1∑
`=1

|A``f \ {f}| = 1 + (κ+ 1)(κ− 1) = κ2.

So V =

κ+1⋃
`=1

A``f . Thus for each g ∈ V , g 6= f , g contains b``f for exactly one `. That

is, every pair of assessment variants share exactly one question.
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Our goal now is to see if these upper bounds can be attained. With this goal in

mind, we define two mathematical concepts.

Note 1. For each prime p and positive integer m, there exists a finite field GF (pm)

of size pm, called the Galois field of order pm. Addition, subtraction, multiplication

and division are defined. In the case of m = 1, the field is Zp, where the operations

are arithmetic modulo p. We will represent the elements of GF (pm) by the integers 0

to pm − 1. [5].

Definition 3. A subspace of a vector space Rk for field R is a subset V of Rk that

contains all linear combinations of V . For k finite, this is equivalent to saying that a

subspace is the set of all linear combinations of a finite set, which is called a spanning

set. A basis for a subspace of Rk is a smallest spanning set.

We represent Example 2 as a subspace in the vector space GF (5)6, over the Ga-

lois field of order 5. Each function f , representing an assessment variant, is given by

an ordered list of questions from the six question pools. Corresponding to the func-

tion (b1i1 , b2i2 , b3i3 , b4i4 , b5i5 , b6i6) is the element 〈i1, i2, i3, i4, i5, i6〉 of the vector space

GF (5)6. (This is why we chose to index each question pool starting with 0.) The set

F0 is actually a subspace of GF (5)6:

F0 = {(0, 0, 0, 0, 0, 0), 〈1, 1, 1, 1, 1, 0〉, 〈2, 2, 2, 2, 2, 0〉, 〈3, 3, 3, 3, 3, 0〉, 〈4, 4, 4, 4, 4, 0〉}

= {t〈1, 1, 1, 1, 1, 0〉|t ∈ GF (5)}

The other sets Fi (1 ≤ i ≤ 4) are not subspaces, but they are translates (“cosets” in

group theory terminology) of F0. For example,

F1 = {(0, 1, 2, 3, 4, 1), (1, 2, 3, 4, 0, 1), (2, 3, 4, 0, 1, 1), (3, 4, 0, 1, 2, 1), (4, 0, 1, 2, 3, 1)}

= {t〈1, 1, 1, 1, 1, 0〉+ 〈0, 1, 2, 3, 4, 1〉|t ∈ GF (5)}

In fact,
⋃

0≤i≤4

Fi is the subspace of (GF (5))6 spanned by

{〈1, 1, 1, 1, 1, 0〉, 〈0, 1, 2, 3, 4, 1〉}, and
⋃
Fi|{Q1,Q2,Q3,Q4,Q5} is the subspace of GF (5)5

spanned by {〈1, 1, 1, 1, 1〉, 〈0, 1, 2, 3, 4〉}.

3. The Proof for cq = 1

Our goal in this section is to create the largest number of assessment variants where

each pair of assessment variants have at most one question in common. In a subsection

below, we connect the maximal assessment variant formations for cq = 1 to finite

projective planes. Meanwhile, a few concrete examples of maximal assessment variant
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formations for cq = 1 are given between the theorems.

3.1. Constructing κ2 Many Assessment Variants

Theorem 3. Suppose p is a prime number, m ≥ 1 is an integer and κ = pm. Then

F = {s〈1, 1, 1, · · · , 1, 0〉+t〈0, 1, 2, · · · , κ−1, 1〉| s, t ∈ GF (κ)} ⊂ (GF (κ))κ+1 represents

a maximal assessment variant formation for cq = 1 of order κ.

Proof. We leave the cases κ = 4 and κ = 5 as examples and leave the case κ = 3 as

an exercise to the reader; so we can assume κ > 5.

Let F be the subspace of GF (κ)κ+1 spanned by ~v1 = 〈1, 1, 1, · · · , 1, 0〉 and ~v2 =

〈0, 1, 2, · · · , κ− 1, 1〉. Hence F is of size κ2. It remains to show that cq = 1.

For each pair ~g1, ~g2 ∈ F , ~g1 − ~g2 = s〈1, 1, 1, · · · , 1, 0〉 + t〈0, 1, 2, · · · , κ− 1, 1〉 for

s, t ∈ GF (κ).

If ~g1(i) = ~g2(i) and ~g1(j) = ~g2(j) for distinct i, j, then (~g1 − ~g2)|{i,j} = ~0, that is,

(~g1 − ~g2)|{i,j} = s〈1, 1, 1, · · · , 1, 0〉|{i,j} + t〈0, 1, 2, · · · , κ − 1, 1〉|{i,j} = 〈0, 0〉. We show

that any pair of the form {〈1, 1, 1, · · · , 1, 0〉|{i,j}, 〈0, 1, 2, · · · , κ−1, 1〉|{i,j}} are linearly

independent:

Case 1: For i < j 6= κ+ 1, then ~v1|{i,j} = 〈1, 1〉 and ~v2|{i,j} = 〈i− 1, j − 1〉 and they

are linearly independent.

Case 2: For i < j = κ+ 1, then ~v1|{i,j} = 〈1, 0〉 and ~v2|{i,j} = 〈i− 1, 1〉 and they are

linearly independent.

Then s and t have to be both zero. Therefore, ~g1 − ~g2 has at most one zero entry,

i.e., cq = 1.

Theorem 2 tells us that in this maximal assessment variant formation every pair

of assessment variants share exactly one question. We can see this directly, be-

cause for each pair (s1, t1) and (s2, t2), either t1 = t2, so that s1〈1, 1, 1, · · · , 1, 0〉 +

t1〈0, 1, 2, · · · , κ−1, 1〉 and s2〈1, 1, 1, · · · , 1, 0〉+ t2〈0, 1, 2, · · · , κ−1, 1〉 share only ques-

tion Qκ+1, or s1 + t1i = s2 + t2i has a unique solution i, so that

s1〈1, 1, 1, · · · , 1, 0〉+ t1〈0, 1, 2, · · · , κ− 1, 1〉 and s2〈1, 1, 1, · · · , 1, 0〉
+ t2〈0, 1, 2, · · · , κ− 1, 1〉 share only question Qi+1 (0 ≤ i ≤ κ− 1).

Example 3. We can generate a maximal assessment variant formation for cq = 1 of

order κ = 4 in (GF (4))5.

Consider the vector space (GF (22))5, where the sum operation is induced by +

and scalar multiplication is induced by × in Table 1. The subspace generated by

{〈0, 1, 2, 3, 1〉, 〈1, 1, 1, 1, 0〉} consists of the following assessment variants.
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{b10, b20, b30, b40, b50} {b10, b21, b32, b43, b51} {b10, b22, b33, b41, b52} {b10, b23, b31, b42, b53}
{b11, b21, b31, b41, b50} {b11, b20, b33, b42, b51} {b11, b23, b32, b40, b52} {b11, b22, b30, b43, b53}
{b12, b22, b32, b42, b50} {b12, b23, b30, b41, b51} {b12, b20, b31, b43, b52} {b12, b21, b33, b40, b53}
{b13, b23, b33, b43, b50} {b13, b22, b31, b40, b51} {b13, b21, b30, b42, b52} {b13, b20, b32, b41, b53}

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

× 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

Table 1. Addition and multiplication tables for GF (4).

Example 4. For cq = 1, the set of all images of elements in F in Example 2 is a

maximal assessment variant formation for cq = 1 of size 25 of order κ = 5. A LATEX

template to generate an assessment variant formation and a question pool template is

given in Figure A1 to be used with the code in Figure C1. The operations + and ×
used for (GF (5))6 is induced by + and × in Z5.

3.2. How the case cq = 1 is related to Finite Projective Planes

Definition 4. A projective plane consists of a set of points and a set of lines, each

line defined as a subset of the set of points, having the following properties:

(1) For any two distinct points, there is exactly one line that includes both points.

(2) For any two distinct lines, there is exactly one point that is included in both

lines.

(3) There are four points such that no line includes more than two of them.

A projective plane P is of order κ if it contains κ2 + κ+ 1 lines and κ2 + κ+ 1 points;

furthermore, each point in P belongs to κ+ 1 lines and each line in P contains κ+ 1

points. [1]

Theorem 4. A maximal assessment variant formation for cq = 1 of order κ > 3

exists if and only if a projective plane of order κ exists.

Proof. Let V be a maximal assessment variant formation for cq = 1 and of order κ,

with question pools Bi (1 ≤ i ≤ κ+ 1). Define an arrangement of points and lines as

follows. The set of points is {∞} ∪
⋃
Bi, and the set of lines is V ∪ {Bi ∪ {∞} : 1 ≤

i ≤ κ+ 1}. Thus there are κ2 + κ+ 1 points and κ2 + κ+ 1 lines. We show this gives

a projective plane.

Axiom 1: If the two questions are from different pools, bi` and bjm for i 6= j, there

is exactly one assessment variant containing {bi`, bjm} since cq = 1. If the two

questions are in the same pool or one point is infinity, then the pool containing

the question(s) is the line.
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Axiom 2: If two lines are two distinct assessment variants, then by Theorem 3, they

intersect in exactly one point.

If two lines are both (extended) question pools, then infinity is the only com-

mon point. If one line is an assessment variant and the other one is a pool, since

each assessment variant contains exactly one question from each question pool,

the intersection is that question from that pool.

Axiom 3: A set needed for the third axiom is a set of two questions from B1 and two

questions from B2.

Conversely, let P be a projective plane of order κ, and fix p ∈ P . Let L1, L2,

. . . , Lκ+1 be the lines containing p. Let Bi = Li \ {p}; the sets Bi are the question

pools. There are κ2 lines P not containing p; let L be such a line. We claim these are

assessment variants for a maximal assessment variant formation with question pools

Bi. We check that each point in L is contained in one of the Bi = Li \ {p}. Each L

contains exactly κ+ 1 points and intersects each of the κ+ 1 Li in exactly one point.

Since no point can be in L and in two of the Li, the intersections L ∩ Li cover all

κ + 1 points of L. This setup provides κ + 1 question pools, each of size κ and κ2

exam variants, where each exam variant contains exactly one question from each pool;

finally, every pair of question variants have only one common question.

Corollary 1. For every power pm of a prime p with pm > 3, there exists a maximal

assessment variant formation for cq = 1 of order pm.

There is no maximal assessment variant formation for cq = 1 of order κ = 6 or

order κ = 10.

This is because there exists a projective plane of every prime power order. It is

not known whether there exists a projective plane of any order that is not a power

of a prime, although it is known that no projective planes of order 6 or 10 exist. So

Theorem 4 does not answer the question of whether a maximal assessment variant

formation exists for cq = 1 with order not a prime power.

4. The Proof for cq > 1

There is a natural way of generating assessment variants from 2κ+ 2 disjoint question

pools where each pool is of size κ: divide the sets of pools into two equal size sets

and generate two maximal assessment variant formations; pair each assessment variant

from the first set with exactly one assessment variant from the second set. This method

creates κ2 assessment variants, from 2κ+ 2 pools of size κ, where cq = 2. This method

does not give the optimum pool size but it can be desirable with larger s.

10



Definition 5. Let V1 = {vi|1 ≤ i ≤ N1} be a set of N1 distinct assessment variants,

and V2 = {ui|1 ≤ i ≤ N2} a set of N2 distinct assessment variants, V1 and V2

have disjoint question pools. The distinct concatenation of V1 and V2 is the set C :=

{vi ∪ ui|1 ≤ i ≤ min(N1, N2)}.

Note: C is a set of exam variants of size min(N1,N2) with s = s1 + s2 and cq ≤
cq1 + cq2, where si is the number of questions and cqi is the maximum number of

common questions for Vi.
In Theorem 5, we construct an optimal number of exam variants for cq = 2.

Theorem 5. Let κ > 3 be a positive integer power of a prime number. Then

G = {s 〈1, 1, 1, · · · , 1, 0〉︸ ︷︷ ︸
~u1

+t 〈0, 1, 2, · · · , κ− 1, 0〉︸ ︷︷ ︸
~u2

+u 〈0, 12, 22, 32, · · · , (κ− 1)2, 1〉︸ ︷︷ ︸
~u3

|s, t, u ∈ GF (κ)} ⊂ (GF (κ))κ+1

represents a set of κ3 assessment variants with s = κ+ 1 and cq = 2.

Furthermore, if GF (κ) is of characteristic 2 (that is, for all i ∈ GF (κ), i+ i = 0),

then

H = {s 〈1, 1, 1, · · · , 1, 0, 0〉︸ ︷︷ ︸
~v1

+t 〈0, 1, 2, · · · , κ− 1, 1, 0〉︸ ︷︷ ︸
~v2

+u 〈0, 12, 22, 32, · · · , (κ− 1)2, 0, 1〉︸ ︷︷ ︸
~v3

|s, t, u ∈ GF (κ)} ⊂ (GF (κ))κ+2

represents a set of κ3 assessment variants with s = κ+ 2 and cq = 2.

Proof. The proof is similar to the proof of Theorem 3.

First note that the sets {~u1, ~u2, ~u3} and {~v1, ~v2, ~v3} are linearly independent; there-

fore, each set spans a vector subspace of size κ3. It remains to show that each pair of

the vectors in G agree in fewer than 3 entries, and that the same holds for H if GF (κ)

is of characteristic 2.

For each pair ~w1 and ~w2 in H, ~w1 − ~w2 = s~v1 + t~v2 + u~v3. If ~w1(i) = ~w2(i),

~w1(j) = ~w2(j) and ~w1(k) = ~w2(k), for distinct i, j, k, then (~w1 − ~w2) |{i,j,k} = ~0. It

remains to show {~v1|{i,j,k}, ~v2|{i,j,k}, ~v3|{i,j,k}} is linearly independent for any distinct

i, j, k.

Associate with the subspace H the matrix A =

~v1

~v2

~v3

. The set of columns of A is

C = {~e1, ~e2, ~e3} ∪


 1

α

α2

 : 1 ≤ α ≤ κ− 1

 ,

where ~ei is the standard unit vector. Note that deleting the column ~e2 from A gives

the matrix whose rows are the vectors ~ui associated with G. We wish to show that

any three vectors in C \ {~e2} are linearly independent for any field GF (κ), and any

three vectors in C are linearly independent if GF (κ) is of characteristic 2. Clearly, any

set of three vectors in C including at least two of the ~ei is linearly independent. We
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consider the other cases. Note that a set of three vectors is linearly independent if and

only if the 3× 3 matrix M with these vectors as columns has nonzero determinant.

Case 1: M =

 1 1 1

0 α β

0 α2 β2

 for distinct α, β 6= 0. The determinant of M is αβ2−βα2 =

αβ(β − α) 6= 0.

Case 2: M =

 0 1 1

0 α β

1 α2 β2

 for distinct α, β 6= 0. The determinant of M is β − α 6= 0.

Case 3: M =

 0 1 1

1 α β

0 α2 β2

 for distinct α, β 6= 0. The determinant of M is β2 − α2 =

(β − α)(β + α). This is 0 if and only if β = −α. If GF (κ) is of characteristic

2, then β = −α if and only if β = α. So for distinct nonzero α, β if GF (κ) of

characteristic 2, the determinant of M is nonzero.

Case 4: M =

 1 1 1

α β γ

α2 β2 γ2

 for distinct α, β, γ 6= 0. The determinant of M (a Vander-

monde matrix) is (γ − α)(γ − β)(β − α) 6= 0.

Thus, in all cases, the three vectors are linearly independent, so any pair of vectors in

the subspace agree in fewer than 3 entries.

Note 2. For the set of assessment variants in Theorem 5, if we raise the number of

learning goals, s, by one and add a new question pool of κ questions, cq will be raised

to 3. This is because any additional length 3 vector forms a linearly dependent set with

two columns of A.

Note 3. Theorem 5 provides an optimal size for a set of assessment variants, where

each pair of variants have at most two questions in common, but some pairs have fewer

than two questions in common. This is different from a maximal assessment variant

formation for cq = 1 and of order κ, where each pair have exactly one question in

common. Using a Python code we checked the set of assessment variants generated in

Theorem 5. Table 2 contains the result concerning the intersection of pairs of variants

for κ = 7, 8, 9, 11, 13, 17. Note that for each κ, arrays for κ3 assessment variants were

generated, and κ3(κ3−1)
2 distinct pairs of those variants were considered.

κ s Number of distinct pairs with Number of distinct pairs with Number of distinct pairs with

no common questions 1 common question 2 common questions

7 8 21609 8232 28812

8 10 50176 0 80640

9 10 104976 29160 131220

11 12 366025 79860 439230

13 14 1028196 184548 1199562

17 18 5345344 707472 6013512

Table 2. Intersection of variants when cq = 2.
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In Theorems 3 and 5, we give bases to generate a set of assessment variants for s = κ+1

questions. If we restrict the basis vectors to vectors of smaller dimensions; the new

basis generates a set of assessment variants for s < κ + 1. So from Theorems 1, 3,

and 5 we get the following.

Theorem 6. Suppose p is a prime number, m ≥ 1 is an integer and κ = pm. Then

for any s ≤ κ + 1, there exists a set of assessment variants of size κc+1 for cq = c

where c ∈ {1, 2}.

Note 4. Using Python, we verified that for κ = 7, 8, 9, 11 a basis in GF (κ)κ+1, similar

to those in Theorems 3 and 5, will generate κ4 assessment variants with s = κ+1 and

cq = 3. The ratio
cq

s
is at least

1

4
for these cases; this ratio is already considered high

for conserving the integrity of the exam, [4]. We do not see any value in expanding the

method in Theorem 3 to higher cq > 2. Instead we use other methods to complement

Theorem 3.

Example 5. An instructor has N = 98 students in a course and is planning to write

an unproctored exam with s = 20 learning goals. How should the instructor choose

the number of questions in each question pool?

This instructor has two major constraints for writing this exam: 1○ the number of

questions they are able to write for this assessment, which itself can be related to time

constraints, question type constraints and other factors; and 2○ the maximum number

of questions in common for each pair of assessment variants.

Case 1: The instructor doesn’t mind writing a large number of questions. Then creating

20 pools of κ = 19 questions is recommended, that is, 20 × 19 = 380 questions

in total. These pools will produce 192 = 361 exam variants with cq = 1, using

the basis in Theorem 3.

Case 2: The instructor is trying to minimize the number of question in each pool and

cq ≤ 2 is acceptable. In this case, κ = 11 is the smallest prime power whose

square is larger than N = 98. Using distinct concatenation of two assessment

variant sets each made from 10 pools of κ = 11 questions (20×11 = 220 questions

in total) generates 112 = 121 exam variants with cq = 2.

Case 3: The instructor is trying to minimize the number of questions in each pool and

cq ≤ 3 is acceptable. Then they can divide the learning goals into two sets of

sizes 12 and 8; creating 11 questions in each of the first 12 pools and 7 questions

in each of the remaining 8 pools. Using Theorem 3, they generate 121 assessment

variants with cq = 1; using Theorem 5, the generate 83 = 343 assessment variants

with cq = 2. The set of distinct concatenation of the two assessment variants is

of size 121 with cq = 3. In this case, the instructor must write a total number of
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12× 11 + 8× 7 = 188 questions.

Depending on how the instructor wants to arrange the exam, there are multiple

ways of using Theorems 3 and 5 and distinct concatenation to create assessment

variants.

5. How to Choose the Number of Questions in Each Pool

When deciding on the number of questions per pool, we typically have two known pa-

rameters. The first known parameter is N , the number of assessment variants needed,

which is either the number of students in the course or the total number of expected

retake exams. The other known parameter is s, the number of questions or the number

of question pools in the assessments. Choose a value for cq to achieve a desired ratio

cq : s. If cq = 1, then use the corresponding case below to find the size of each question

pool. If cq = 2, decide if you need to apply distinct concatenation or not. cq = 2

without distinct concatenation produces a large number of assessment variants and is

ideal for large courses. cq = 2 with distinct concatenation, produces a smaller set of

assessment variants and requires reasonably fewer questions in each question pool.

cq = 1 : (Before distinct concatenation.) Find the smallest positive integer power of a

prime, κ = pm such that pm ≥ s−1 and p2m > N . When s is relatively high this

process may require writing a high volume of questions; we recommend cq > 1

with distinct concatenation.

cq = 2 : (Before distinct concatenation.) Find the smallest positive integer power of a

prime, κ = pm such that pm ≥ s− ` and p3m > N , where ` = 1 when p > 2 and

` = 2 when p = 2.

If you decide to use cq > 1 with distinct concatenation, divide the learning goals

into smaller sets. Depending on the number of distinct concatenations you are

applying, find the number of questions per pool in each set of learning goals,

using the above cases. Generate the sets of assessment variants for each set of

learning goals. Then distinctly concatenate the sets of assessment variants.

6. Conclusion and Further Questions

Even when classes fully in-person, large question pools can be used to create pre-

assessments, [3]. In this way students can practice concepts before a proctored assess-

ment, with the incentive of earning a few points. This work can be used to effectively

create mastery-based assessments. In fact one of the authors and two other colleagues

have been using this method to create mastery-based assessments for two courses. We
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each print large pdf files of assessment variants and pdf files of the solutions for grading

purposes. This way, each student can retake the assessment using a new variant. We

are planning to discuss some of the classroom practices, appropriate for large question

pools, in another paper.

Finally, some open questions:

(1) For what values of κ and cq > 1, does a maximal assessment variant formation

exist?

(2) Let s = κ+ 1, and N = κ2; our method renders cq = 1. The number of ways to

choose a maximal assessment variant formation is far less than the number of

choices of all sets of assessment variants of size κ+1. Therefore in case N = κ+1,

the expected value of cq in the randomization method is bigger than the value

of cq when using the methods of this paper. Are there ways to improve expected

value of cq for the method of randomization?

(3) When there are major difficulties in creating large enough pools for a few learning

goals, what are the best practices for generating assessment variants?
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Appendix A. Main LATEX File for 6 Pools of 5 Questions, One Question

in Common

Figure A1. This is the main file for creating a set of 25 assessment variants from 6 pools of 5 questions

each, where each pair of assessment variants have only one question in common. Create another file, named

Questions, for pools. The code for the pools is given in Figure C1.

\documentclass[12pt]{article}

\usepackage{amsmath, amsthm, amssymb}

\usepackage{multicol,pgf,tikz,import,ifthen,framed,aurical}

\usetikzlibrary{math}

\usepackage[margin=0.6in]{geometry}

\begin{document}

\tikzmath{\p=5;\seven=0;\kone=1;\ktwo=2;\kthree=3;\kfour=4;\kfive=5;\ksix=1;}

\tikzmath{\lone=1;\ltwo=1;\lthree=1;\lfour=1;\lfive=1;\lsix=0;}

\foreach \l in {0,1,...,4}

{\foreach \k in {0,1,...,4}

{\tikzmath{\one=int(Mod(\l*\lone+\kone*\k,\p));}

\tikzmath{\two=int(Mod(\l*\ltwo+\k*\ktwo,\p));}

\tikzmath{\three=int(Mod(\l*\lthree+\k*\kthree,\p));}

\tikzmath{\four=int(Mod(\l*\lfour+\k*\kfour,\p));}

\tikzmath{\five=int(Mod(\l*\lfive+\k*\kfive,\p));}

\tikzmath{\six=int(Mod(\l*\lsix+\k*\ksix,\p));}

\input{Questions}

}}

\end{document}
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Appendix B. Main LATEX File for 6 Pools of 5 Questions, Two Questions

in Common

Figure B1. This is the main file for creating a set of 125 assessment variants from 6 pools of 5 questions

each where each pair of assessment variants have at most two question in common. Create another file, named

Questions, for pools. The code for the pools is given in Figure C1.

\documentclass[12pt]{article}

\usepackage{amsmath, amsthm, amssymb}

\usepackage{multicol,pgf,tikz,import,ifthen,framed,aurical}

\usetikzlibrary{math}

\usepackage[margin=0.6in]{geometry}

\begin{document}

\tikzmath{\p=5;\kone=1;\ktwo=1;\kthree=1;\kfour=1;\kfive=1;\ksix=0;

\lone=1;\ltwo=2;\lthree=3;\lfour=4;\lfive=0;\lsix=0;

\mone=int(Mod(int((\lone)^2),\p)); \mtwo=int(Mod(int((\ltwo)^2),\p));

\mthree=int(Mod(int((\lthree)^2),\p));\mfour=int(Mod(int((\lfour)^2),\p));

\mfive=0;\msix=1;}

\foreach \m in {0,1,...,4}

{\foreach \l in {0,1,...,4}

{\foreach \k in {0,1,...,4}

{\tikzmath{\one=int(Mod(\l*\lone+\kone*\k+(\kone)^2*\m,\p));}

\tikzmath{\two=int(Mod(\l*\ltwo+\k*\ktwo+(\ktwo)^2*\m,\p));}

\tikzmath{\three=int(Mod(\l*\lthree+\k*\kthree+(\kthree)^2*\m,\p));}

\tikzmath{\four=int(Mod(\l*\lfour+\k*\kfour+(\kfour)^2*\m,\p));}

\tikzmath{\five=int(Mod(\l*\lfive+\k*\kfive+(\kfive)^2*\m,\p));}

\tikzmath{\six=int(Mod(\l*\lsix+\k*\ksix+(\msix)*\m,\p));}

\input{Questions}}}}

\end{document}

Appendix C. LATEX File for Storing 6 Pools of 5 Questions
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Figure C1. This is a sample of 6 question pools where all pools are in one file. Instruction: Save all in a file

name Questions.tex in the same directory as the file in Figure A1. Replace each bij by a question in pool i.

\clearpage\setcounter{page}{1}

\begin{center}{\bf \huge Nature 101 - Prerequisite Quiz}\end{center}

\hrule\vskip 7pt

{\bf \Large Name (in print):} \hskip 5cm {\bf \Large Lab Instructor: }

\vskip 5pt\hrule

\begin{multicols}{2}

\begin{enumerate}\setcounter{enumi}{0}%Question Pool 1 for Learning objective1

\item\ifthenelse{\one=0}{$b_{10}$}{\ifthenelse{\one=1}{$b_{11}$}

{\ifthenelse{\one=2}{$b_{12}$}{\ifthenelse{\one=3}{$b_{13}$}

{\ifthenelse{\one=4}{$b_{14}$}{\ifthenelse{\one=5}{Error!}{}}}}}}

\vskip 2cm%Question Pool 2 for Learning objective2

\item\ifthenelse{\two=0}{$b_{20}$}{\ifthenelse{\two=1}{$b_{21}$}

{\ifthenelse{\two=2}{$b_{22}$}{\ifthenelse{\two=3}{$b_{23}$}

{\ifthenelse{\two=4}{$b_{24}$}{\ifthenelse{\two=5}{Error!}{}}}}}}

\vskip 2cm%Question Pool 3 for Learning objective3

\item\ifthenelse{\three=0}{$b_{30}$}{\ifthenelse{\three=1}{$b_{31}$}

{\ifthenelse{\three=2}{$b_{32}$}{\ifthenelse{\three=3}{$b_{33}$}

{\ifthenelse{\three=4}{$b_{34}$}{\ifthenelse{\three=5}{Error!}{}}}}}}

\end{enumerate}\vskip 2.5cm\columnbreak

\begin{enumerate}\setcounter{enumi}{3}

%Question Pool 4 for Learning objective4

\item\ifthenelse{\four=0}{$b_{40}$}{\ifthenelse{\four=1}{$b_{41}$}

{\ifthenelse{\four=2}{$b_{42}$}{\ifthenelse{\four=3}{$b_{43}$}

{\ifthenelse{\four=4}{$b_{44}$}{\ifthenelse{\four=5}{Error!}{}}}}}}

\vskip 2cm%Question Pool 5 for Learning objective5

\item \ifthenelse{\five=0}{$b_{50}$}{\ifthenelse{\five=1}{$b_{51}$}

{\ifthenelse{\five=2}{$b_{52}$}{\ifthenelse{\five=3}{$b_{53}$}

{\ifthenelse{\five=4}{$b_{54}$}{\ifthenelse{\five=5}{Error!}{}}}}}}

\vskip 2cm%Question Pool 6 for Learning objective6

\item \ifthenelse {\six=0}{$b_{60}$}{\ifthenelse {\six=1}{$b_{61}$}

{\ifthenelse{\six=2}{$b_{62}$}{\ifthenelse{\six=3}{$b_{63}$}

{\ifthenelse{\six=4}{$b_{64}$}{\ifthenelse{\six=5}{Error!}{}}}}}}

\end{enumerate}\vskip 3.5cm\end{multicols}\pagebreak
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