Worksheet 18: Section 5.1

I said:" Integration is arguably the most fundamental concept in Calculus. It will show up in every course where Calculus is a prerequisite. Please keep going to classes and completing your assignments. For us, it has been a semester with post lock-down deficiencies and extreme reductions in resources. Despite it all, watching your progress and a huge improvement in your math knowledge and skills keep us going. Please continue the hard work. Don't slow down!"

Velocity and Distance

The area under the graph of $v(t)$ on a time interval $[a, b]$ measures the net distance traveled, or displacement, between times a and b.

$$
\text { Units of area under the graph of } \begin{aligned}
v(t) & =\text { units of } t \times \text { units of } v(t) \\
& =\text { time } \times \frac{\text { distance }}{\text { time }} \\
& =\text { distance. }
\end{aligned}
$$

Summation Notation:

The notation $\sum_{j=m}^{n} a_{j}$ means $a_{m}+a_{m+1}+a_{m+2}+\ldots+a_{n-1}+a_{n}$.

- \sum is the Greek letter Sigma (mnemonic for "sum.")
- The notation $\sum_{j=m}^{n}$ tells us to start at $j=m$ and to end at $j=n$.
$-a_{j}$ is called the general term and j is the summation index.

Riemann Sum:

The estimate for the area under the graph of a continuous, positive function $f(x)$ on an interval $[a, b]$ is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x
$$

and the exact area is

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left(f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right) \\
& =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f\left(x_{j}\right) \Delta x .
\end{aligned}
$$

Approximation of the net area over $[a, b]$ using Riemann sums.

- If n is the number of divisions, the length of sub-intervals is $\Delta x=\frac{b-a}{n}$.
- Choose sample point for each sub-interval. The height of each rectangle over the i th sub-interval is $f\left(x_{i}\right)$ and the area is $f\left(x_{i}\right) \Delta x$.
- Sum all the areas.

Newton's Method (Section 4.8)

To approximate a root of $f(x)$, choose an initial value x_{0}. Generate successive approximations of the root through the equation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Sometimes, Newton's Method does not approximate a root.

GroupWork Rubrics day 2:
Preparedness: _- 0.5, Contribution: __/0.5, Correct Answers: _-/ 0.5

Group Work Portion of the Worksheet

Names:
Work in groups to do this portion of the worksheet. Make sure to take parts in solving the problems. Your participation score is a combination of being prepared, willing to explore the problem, working in groups and contributing toward the solution.

1. Background Story: Two points to remember: (1) Remember the distance traveled in small interval of time, Δs_{i}, can be approximated by $\Delta s_{i} \approx v\left(t_{i}\right) \Delta t$. (2) The sum of all of these small lengths approximate the total displacement and is a Riemann Sum.
Questions: A car starts moving and continues with positive acceleration for two seconds. The velocity of a car is recorded at half-intervals(in meters per second). Use the left- and the rightendpoint approximation to estimate a lower and an upper bound for the net distance traveled during the first 2 seconds.

t (in seconds)	0	0.5	1	1.5	2
$v(t)$ (in meters per seconds)	0	2	6	11	20

2. Background Story: (1) The Riemann sum approximations, for a continuous function $f:[a, b] \rightarrow \mathbb{R}$, are categorized by the number of sub-intervals n and the sample points. Some examples are L_{n} which is the the approximation using n intervals and the left end point of each interval as samples points. R_{n} and M_{n} are similarly defined for approximations using right-hand points and midpoints.
(2) The net area $=$ (area under the graph of f and above x-axis) $-($ area above the graph of f and below the x-axis).

Questions: For $f(x)=x^{2}-7 x+6$ on the interval $[1,7]$. Calculate R_{4}, L_{4}, and M_{4}. Sketch the graph of f and the rectangles that make up each approximation.
3. Understand \sum notation.
(A) Expand $\sum_{n=1}^{5}(3 n+1)$ and evaluate it. \quad (B) Expand $\sum_{n=0}^{5}(3 n+1)$ and evaluate it.
(C) (Calc 2) Find the values of c and d such that $\sum_{n=1}^{5}(3 n-2)=\sum_{n=c}^{d}(3 n+1)$.
(D) (Computer science) Find a formula for $\sum_{i=1}^{n}(3 i+1)+\sum_{i=1}^{n}(3 i+1)$ using the following pattern. Then find a formula for $\sum_{i=1}^{n}(3 i+1)$.

4. Let $f(x)=x^{2}-8$. Compute the root of this polynomial using Newton's method.

Note that the Newton's formula for the polynomial is $x_{n+1}=x_{n}-\frac{x_{n}^{2}-8}{2 x_{n}}$
(A) Start point: $x_{0}=1$.
$x_{1}=$
$x_{2}=$
$x_{3}=$
$x_{3}=$
$x_{4}=$
$x_{5}=$
(B) What is the accuracy after 5 iterations?
(C) Start point: $x_{0}=-1$.
$x_{1}=$
$x_{2}=$
$x_{3}=$
$x_{3}=$
$x_{4}=$
$x_{5}=$
(D) Start point: $x_{0}=0.5$.
$x_{1}=$
$x_{2}=$
$x_{3}=$
$x_{3}=$
$x_{4}=$
$x_{5}=$

