Week 14-Lab 1: Worksheet 19: Section 5.2

They were doing optimization problems and they said:"Algebra is difficult. We took it online." I said:" We understand and we are adapting to it but we are expecting everyone catch up in one or two semesters." Then I asked: "Can you tell the consumer that you built this bridge, airplane, data security and ... but you are not caught up with what you needed to learn after pandemic?" They laughed but they agreed.

Definite Integral:

The definite integral of f on the interval $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$, provided that this limit exists.
(i) If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$.
(ii) The definite integral calculates net area. To find the total area contained between the graph of a function and the x-axis, calculate $\int_{a}^{b}|f(x)| d x$.

Properties of definite integrals:

(i) For a constant $c, \int_{a}^{b} c d x=c(b-a)$.

(ii) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

(iii) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(iv) $\int_{a}^{a} f(x) d x=0$.
(v)

$$
\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x
$$

(vi)

The brown area is the sum of the pink and the blue.

$\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
The pink area is c times the blue area

(vii) If $f(x) \geq g(x)$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.
(viii) If $m \leq f(x) \leq M$ on the interval $[a, b]$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.

Group Work Portion of the Worksheet

Names:
Work in groups to do this portion of the worksheet. Make sure to take parts in solving the problems. Your participation score is a combination of being prepared, willing to explore the problem, working in groups and contributing toward the solution.

1. Background Story: Learn to convert Sigma notation to elongated S notation. Questions:
(A) Find $\Delta x, f(a+n \Delta x)$ and express

$$
\int_{1}^{3} \frac{x}{2+x^{4}} d x
$$

as a limit of Riemann sums.
(B) Express

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\cos \left(2 \pi+\frac{i \pi}{n}\right)}{2 \pi+\frac{i \pi}{n}}\left(\frac{\pi}{n}\right)
$$

as a definite integral.
2. Write $\int_{2}^{-5} f(x) d x+\int_{1}^{-3} f(x) d x-\int_{2}^{-3} f(x) d x$ as a single integral $\int_{a}^{b} f(x) d x$.

Useful formulas
Use once:
Swapping the limits of an integral: $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
Use twice:
Combining the sum of 2 integrals $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$

GroupWork Rubrics: Preparedness: __ / 1 point, Contribution: __ $/ 1$ point, Correct Answers: __/1 point

Individual Portion of the Worksheet

Name:

\qquad
Upload this section individually on canvas or turn it in to your instructor on the $2^{\text {nd }}$ lab day of the week. You can ask questions in class and work in groups but you turn in the individual work. Start before the class so you can ask questions during the class. If you didn't complete the work in class, make sure to work on it outside the class and complete it. Show all your work; your score depends on the work you have shown.
3. Background Story: Use the properties of definite integrals in the given order.

Useful formulas:

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

"Distribute":

$$
\int_{a_{h}}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x
$$

For a constant c

$$
\int_{a_{2}}^{J_{a}} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

For a constant $c, \quad \int_{a}^{b} c d x=c(b-a)$

Questions:

(A) (2 points) Calculate the definite integral $\int_{2}^{0}\left(6 f(x)-\frac{g(x)}{3}+4\right) d x$ if

$$
\int_{0}^{2} f(x) d x=5 \quad \int_{0}^{2} g(x) d x=-4
$$

4. (2 points) Background Story: Use the graph and geometry to compute. Remember that the area of a triangle is half of a height times the corresponding base.

Questions:

Graph $f(x)=|6-x|$ and calculate the definite integral, using geometry,

$$
\int_{0}^{18}|6-x| d x
$$

5. Background Story: We have done this problem using the area computation in precalculus.

Questions: (3 points) The following is a graph of $y=f(x)$. Let $A(x)=\int_{0}^{x} f(t) d t$ and $B(x)=\int_{1}^{x} f(t) d t$. Express $A(t)$ and $B(t)$ as piecewise-defined functions on $[0,18]$.

$$
\left.\begin{array}{l}
A(x)= \begin{cases}\square & \text { when } 0 \leq x \leq 8 \\
\square & \text { when } 8 \leq x \leq 18\end{cases} \\
\square
\end{array} \begin{array}{ll}
\square & \text { when } 0 \leq x \leq 8
\end{array}\right\}\left\{\begin{array}{ll}
\square \\
\square & \text { when } 8 \leq x \leq 18
\end{array}\right] .
$$

