Week 4-Lab 2: Worksheet 6: Sections 14.3 and 14.4

14.3: Geometry of Partial Derivatives:

The planes x = a and y = b intersect the surface z = f(x, y) in curves z = f(a, y) and z = f(x, b) (respectively). The partial derivatives are the slopes of the tangent lines to the two curves.

https://youtu.be/b52bcTlWtFs

- The tangent line to the graph of z = f(x,b) in the x-direction contains the point (a,b,f(a,b)) and has direction vector $(1,0,f_x(a,b))$.
- The tangent line to the graph of z = f(a, y) in the y-direction contains the point (a, b, f(a, b)) and has direction vector $(0, 1, f_y(a, b))$.

Higher Derivatives: $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}, \ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}, \ \text{and} \ \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}$

Clairaut's Theorem: If $f_{xy}(x,y)$ and $f_{yx}(x,y)$ are continuous, then $f_{xy} = f_{yx}$.

14.4: Differentiability:

Suppose that (x, y) = (a, b) is in the domain of a function z = f(x, y). We know that the tangent plane, if it exists, has the equation

$$L_{(a,b)}(x,y) = z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

Total Differentials: $dz = f_x(a,b)\Delta x + f_y(a,b)\Delta y$ How the Differentials and the Tangent Plane are Related:

$$L_{(a,b)}(x,y) = z = f_x(a,b)\underbrace{(x-a)}_{\Delta x} + f_y(a,b)\underbrace{(y-b)}_{\Delta y} + f(a,b)$$
$$\underbrace{z - f(a,b)}_{dz} = f_x(a,b)\underbrace{(x-a)}_{\Delta x} + f_y(a,b)\underbrace{(y-b)}_{\Delta y}$$

Generalized Linearization for \mathbb{R}^n (A Hyper Plane) at the point (a_1, a_2, \dots, a_n) :

$L_{(a_1, a_2, \dots, a_n)}(x_1, x_2, \dots, x_n) = f(a_1, a_2, \dots, a_n) +$	$f_{x_1}(a_1, a_2, \cdots, a_n)$	$(x_1 - a_1) +$	$f_{x_2}(a_1, a_2, \cdots, a_n)$	$(x_2 - a_2) +$	$\cdots + f_{x_n}(a_1, a_2, \cdots, a_n)$	$(x_n - a_n)$
Output: x_{n+1}	Partial 1	Δx_1	Partial 2	Δx_2	Partial n	Δx_n

Group Work Portion of the Worksheet

Names:

Work in groups to do this portion of the worksheet. Make sure to take parts in solving the problems. Your participation score is a combination of being prepared, willing to explore the problem, working in groups and contributing toward the solution.

1. **Background Story:** Partial derivatives keep showing up in many areas. Here is a business application example.

Questions: At a distance of x feet from the beach, the price (\$) of a plot of land of area a square feet is f(a, x).

- (i) What are the units of $f_a(a, x)$.
- (a) What does $f_a(1000, 470) = 7$ mean in practical terms?

- (b) What are the units of $f_x(a, x)$?
- (c) What does $f_x(1000, 470) = -4$ mean in practical terms?
- (d) Which is cheaper:

(i) 1005 square feet that are 475 feet from the beach?

(ii) 995 square feet that are 468 feet from the beach?Justify your answer.

2. Background Story: A common error evaluating any derivative at a point is forgetting to plug in the numbers.

Questions: A student was asked to find the equation of the tangent plane to the surface $z = x^3 - y^2$ at the point (x, y) = (5, 2). The student answered:

$$z = -2y(x-5) + 3x^2(y-2) + 121$$

(A) At a glance, how do you know this is wrong?

(B) What mistakes did the student make?

(C) Answer the question correctly.

3. Background Story: Sometimes the linearization is a hyperplane in \mathbb{R}^4 .

Questions: Approximate $\sqrt{(3.14)^2 + (1.93)^2 + (6.07)^2}$ using a linear approximation.¹

¹Video: https://youtu.be/ck5GnrW1HkI

4. Find an equation of the tangent line to the graph of $f(x,y) = xe^y$ at (5,0) in the y-direction.

5. Compute the first-order partial derivatives of $w(x, y, z) = \frac{5y}{3x + 3z}$.

GroupWork Rubrics day 2:

Preparedness: ____/0.5, Contribution: ____/0.5, Correct Answers: ____/0.5

All questions for individual work for this week are posted in Worksheet 5. This worksheet contains no individual question.