Week 4-Lab 2: Worksheet 6: Sections 14.3 and 14.4

14.3: Geometry of Partial Derivatives:

The planes $x=a$ and $y=b$ intersect the surface $z=f(x, y)$ in curves $z=f(a, y)$ and $z=f(x, b)$ (respectively). The partial derivatives are the slopes of the tangent lines to the two curves.

Plane $y=b$

Plane $x=a$

https://youtu.be/b52bcTlWtFs

- The tangent line to the graph of $z=f(x, b)$ in the x-direction contains the point $(a, b, f(a, b))$ and has direction vector $\left\langle 1,0, f_{x}(a, b)\right\rangle$.
- The tangent line to the graph of $z=f(a, y)$ in the y-direction contains the point $(a, b, f(a, b))$ and has direction vector $\left\langle 0,1, f_{y}(a, b)\right\rangle$.
Higher Derivatives: $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}, \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}$, and $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}$
Clairaut's Theorem: If $f_{x y}(x, y)$ and $f_{y x}(x, y)$ are continuous, then $f_{x y}=f_{y x}$.

14.4: Differentiability:

Suppose that $(x, y)=(a, b)$ is in the domain of a function $z=f(x, y)$. We know that the tangent plane, if it exists, has the equation

$$
L_{(a, b)}(x, y)=z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b) .
$$

Total Differentials: $d z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y$
How the Differentials and the Tangent Plane are Related:

$$
\begin{gathered}
L_{(a, b)}(x, y)=z=f_{x}(a, b) \underbrace{(x-a)}_{\Delta x}+f_{y}(a, b) \underbrace{(y-b)}_{\Delta y}+f(a, b) \\
\underbrace{z-f(a, b)}_{d z}=f_{x}(a, b) \underbrace{(x-a)}_{\Delta x}+f_{y}(a, b) \underbrace{(y-b)}_{\Delta y}
\end{gathered}
$$

Generalized Linearization for \mathbf{R}^{n} (A Hyper Plane) at the point $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$:
$\underbrace{L_{\left(a_{1}, a_{2}, \cdots, a_{n}\right)}\left(x_{1}, x_{2}, \cdots, x_{n}\right)}_{\text {Output: } x_{n+1}}=f\left(a_{1}, a_{2}, \cdots, a_{n}\right)+\underbrace{f_{x_{1}}\left(a_{1}, a_{2}, \cdots, a_{n}\right)}_{\text {Partial } 1} \underbrace{\left(x_{1}-a_{1}\right)}_{\Delta x_{1}}+\underbrace{f_{x_{2}}\left(a_{1}, a_{2}, \cdots, a_{n}\right)}_{\text {Partial } 2} \underbrace{\left(x_{2}-a_{2}\right)}_{\Delta x_{2}}+\cdots+\underbrace{f_{x_{n}}\left(a_{1}, a_{2}, \cdots, a_{n}\right)}_{\text {Partial } n} \underbrace{\left.x_{n}-a_{n}\right)}_{\Delta x_{n}}$

Group Work Portion of the Worksheet

Names:
Work in groups to do this portion of the worksheet. Make sure to take parts in solving the problems. Your participation score is a combination of being prepared, willing to explore the problem, working in groups and contributing toward the solution.

1. Background Story: Partial derivatives keep showing up in many areas. Here is a business application example.
Questions: At a distance of x feet from the beach, the price ($\$$) of a plot of land of area a square feet is $f(a, x)$.
(i) What are the units of $f_{a}(a, x)$.
(a) What does $f_{a}(1000,470)=7$ mean in practical terms?
(b) What are the units of $f_{x}(a, x)$?
(c) What does $f_{x}(1000,470)=-4$ mean in practical terms?
(d) Which is cheaper:
(i) 1005 square feet that are 475 feet from the beach?
(ii) 995 square feet that are 468 feet from the beach?

Justify your answer.
2. Background Story: A common error evaluating any derivative at a point is forgetting to plug in the numbers.
Questions: A student was asked to find the equation of the tangent plane to the surface $z=x^{3}-y^{2}$ at the point $(x, y)=(5,2)$. The student answered:

$$
z=-2 y(x-5)+3 x^{2}(y-2)+121
$$

(A) At a glance, how do you know this is wrong?
(B) What mistakes did the student make?
(C) Answer the question correctly.
3. Background Story: Sometimes the linearization is a hyperplane in \mathbb{R}^{4}.

Questions: Approximate $\sqrt{(3.14)^{2}+(1.93)^{2}+(6.07)^{2}}$ using a linear approximation. 1

[^0]4. Find an equation of the tangent line to the graph of $f(x, y)=x e^{y}$ at $(5,0)$ in the y-direction.
5. Compute the first-order partial derivatives of $w(x, y, z)=\frac{5 y}{3 x+3 z}$.

GroupWork Rubrics day 2 :
Preparedness: __/0.5, Contribution: __/0.5, Correct Answers: __/0.5
All questions for individual work for this week are posted in Worksheet 5. This worksheet contains no individual question.

[^0]: ${ }^{1}$ Video: https://youtu.be/ck5GnrW1HkI

