Name:

MWF 10-10:50 or MWF 11-11:50

Show your work! Answers without supporting work will not be given credit. Print this assignment and write your work in the spaces provided.

1. Consider the ode $y^{\prime}=\frac{\left(3 x^{2}-e^{x}\right)}{(2 y-5)}, y(0)=1$.
(a) Determine whether this equation is Exact or Separable? \square
(b) What is the standard form?

(c) What is the general solution?

(d) What is the explicit IVP solution?

(e) What is/are the singular solution/s?

(f) What is the domain of the solution?

2. Consider $y^{2}\left(1-x^{2}\right)^{\frac{1}{2}} d y=\arcsin (x) d x, y(0)=1 .{ }^{1}$
(a) Determine whether this equation is Exact or Separable?
(b) What is the standard form?
(c) What is the general solution?

(d) What is the explicit IVP solution?

(e) What is/are the singular solution/s?

(f) What is the domain of the solution?

[^0]3. Solve $\frac{x d x}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}+\frac{y d y}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}=0, y(1)=2, x>0$ using the Exact equation method. ${ }^{2}$
4. Consider the equation $\frac{d y}{d x}+\frac{2 y^{2}+6 x y-4}{3 x^{2}+4 x y+3 y^{2}}=0, y(0)=1$.
(a) Determine whether this equation is Exact or Separable?
(b) What is the standard form?

(c) What is the general solution?

[^1]5. Solve the first order homogeneous equation $\frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{2 x y}, x>0$.
6. Solve the first order homogeneous equation $\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0, x>0$.
7. Solve the Bernoulli equation: $t^{2} y^{\prime}+2 t y-y^{3}=0, t>0$.
8. Solve the first order homogeneous equation $x y^{\prime}=y+x e^{y / x}, x>0$. $\quad 3$

[^2]
[^0]: ${ }^{1}$ To solve this remember $\frac{d}{d x}(\arcsin (x))=\frac{1}{\sqrt{1-x^{2}}}$ and you will need a u-substitution.

[^1]: ${ }^{2}$ This is also a separable equation but points are given only to exact method solutions.

[^2]: ${ }^{3}$ This is more challenging than what we have done so far. Remember $e^{y / x}$ is already in the form e^{v}. Take care of the other variable by factoring/dividing by x. Observe $y^{\prime}=f(v)$, then do the substitution.

