Differential Equations

Homework 7

Name: MWF 10-10:50 or MWF 11-11:50

Show your work! Answers without supporting work will not be given credit. Print this assignment and write your work in the spaces provided.

1. Solve $y'' + y = 9\cos(2t) + 3t\sin(2t)$.¹

 $^{^{1}}$ Since and Cosine are present, the method of undetermined coefficient is recommended. This one is one of the rare cases that separating the forcing is not recommended. Instead, make a guess for the entire forcing function and eliminate the repeating terms.

- 2. Consider the equation y'' + by' + cy = 0.
 - (a) If b > 0 and c > 0, what is the limit of the solution as $t \to \infty$?²

Case 1:

Case 2:

Case 3:

(b) Describe the behaviour of the solution as $t \to \infty$ when b = 0 and c > 0.³

²Hints: Solve the characteristic equation in terms of b and c. Solve for general solution in three cases: Case 1: $b^2 - 4c > 0$, Case 2: $b^2 - 4c < 0$ and Case 3: $b^2 - 4c = 0$. You should be able to find the limit in each case as a numerical value. Also comment if oscillation, asymptotic decay or unbounded growth are present. ³That is, when the equation is y'' + cy = 0. Solve the characteristic equation in term of c. Solve for general solution.

3. Find the initial value solution to $y'' + 4y = 3\sin(2t)$ y(0) = 2 and y'(0) = -1.

4. Use the method of variation of parameter to find the general solution to $y'' - y' - 2y = 2e^{-t}$.

5. Find the general solution to $y'' + 4y' + 4y = t^{-2}e^{-2t}$.

6. Find the general solution for $y'' + 4y = 12 \csc(2t)$ $0 < t < \frac{\pi}{2}$.

⁴Only one of the two methods work for this one. ⁵Only one of the two methods work for this one as well.

7. Find the general solution to $y'' + y = \tan(t)$. $-\frac{\pi}{2} < t < \frac{\pi}{2}$