Show your work! Answers without supporting work will not be given credit. Print this assignment and write your work in the spaces provided.

1. Solve $y^{\prime \prime}+y=9 \cos (2 t)+3 t \sin (2 t) .{ }^{1}$

[^0]2. Consider the equation $y^{\prime \prime}+b y^{\prime}+c y=0$.
(a) If $b>0$ and $c>0$, what is the limit of the solution as $t \rightarrow \infty ?^{2}$

Case 1:

Case 2:

Case 3:

(b) Describe the behaviour of the solution as $t \rightarrow \infty$ when $b=0$ and $c>0 .{ }^{3}$

[^1]3. Find the initial value solution to $y^{\prime \prime}+4 y=3 \sin (2 t) \quad y(0)=2$ and $y^{\prime}(0)=-1$.
4. Use the method of variation of parameter to find the general solution to $y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}$.
5. Find the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t} .^{4}$
6. Find the general solution for $y^{\prime \prime}+4 y=12 \csc (2 t) \quad 0<t<\frac{\pi}{2} .{ }^{5}$

[^2]7. Find the general solution to $y^{\prime \prime}+y=\tan (t) . \quad-\frac{\pi}{2}<t<\frac{\pi}{2}$

[^0]: ${ }^{1}$ Since and Cosine are present, the method of undetermined coefficient is recommended. This one is one of the rare cases that separating the forcing is not recommended. Instead, make a guess for the entire forcing function and eliminate the repeating terms.

[^1]: ${ }^{2}$ Hints: Solve the characteristic equation in terms of b and c. Solve for general solution in three cases: Case $1: b^{2}-4 c>0$, Case 2: $b^{2}-4 c<0$ and Case 3: $b^{2}-4 c=0$. You should be able to find the limit in each case as a numerical value. Also comment if oscillation, asymptotic decay or unbounded growth are present.
 ${ }^{3}$ That is, when the equation is $y^{\prime \prime}+c y=0$. Solve the characteristic equation in term of c. Solve for general solution.

[^2]: ${ }^{4}$ Only one of the two methods work for this one.
 ${ }^{5}$ Only one of the two methods work for this one as well.

