Show your work! Answers without supporting work will not be given credit. Print this assignment and write your work in the spaces provided.

1. Prove that $\mathcal{L}(t)=\frac{1}{s^{2}}$ for $s>0$.
2. Prove that $\mathcal{L}\left(t e^{a t}\right)=\frac{1}{(s-a)^{2}}$ for $s>a$
3. (a) Use Euler's identity ${ }^{1}$ to prove $\sin (b t)=\frac{\left(e^{i b t}-e^{-i b t}\right)}{2 i}$.
(b) Use the formula in (a) to prove that $\mathcal{L}(\sin (b t))=\frac{b}{s^{2}+b^{2}}$ for $s>0 . \quad 2$

[^0]4. Use the fact that $\mathcal{L}(\sin (b t))=\frac{b}{s^{2}+b^{2}}$ to find $\mathcal{L}\left(e^{a t} \sin (b t)\right)$ for $s>a .{ }^{3}$
5. Use Leibniz's rule to find $\mathcal{L}(t \sin (b t))$ for $s>0$.

[^1]
[^0]:    ${ }^{1}$ Euler's identity is $e^{i \omega}=\cos (\omega)+i \sin (\omega)$. Do not over-think this. Start with the right hand side and use the identity to simplify to left hand side.
    ${ }^{2}$ Integrate with exponential functions only using part (a). Then use Euler identity to convert to real functions again and find the limit as $t \rightarrow \infty$.

[^1]:    ${ }^{3}$ Hint: Write $\mathcal{L}(\sin (b t))$ and $\mathcal{L}\left(e^{a t} \sin (b t)\right)$ as two integrals and compare them. Simplify the integral $\mathcal{L}\left(e^{a t} \sin (b t)\right)$ to look similar to $\mathcal{L}(\sin (b t))$.

