

Example 1

Consider a tank with volume 100L is filled with a salt solution. Suppose a solution with 2g/L of salt flows into the tank at a rate of 5L/min. The solution in the tank is well-mixed. Solution flows out of the tank at a rate of 5L/min. If initially there is 10g of salt in the tank, how much salt will be in the tank as a function of time?

What is the limiting amount of salt in the tank?

At what time amount of salt in the tank is 100g?

Solution

- Let Q(t) = The amount of salt inside the tank at time t.
- Amount of salt coming in $= 5 \times 2 = 10$ gr/min
- Amount of salt leaving = $5 \times \frac{Q(t)}{100} = 0.05Q(t)$ gr/min
- change in amount per minute = amount coming
 in per minute amount leaving per minute

•
$$\frac{dQ(t)}{dt} = 10 - 0.05Q(t)$$

• You can use the method that we used for the falling objects but I recommend Linear First Order.

Step 1 : Standard form: Q' + 0.05Q = 10

Step 2 : $\mu(t) = e^{\int 0.05 dt} = e^{0.05t}$

Step 3 : Multiply: $Qe^{0.05t} + 0.05e^{0.05t}Q = 10e^{0.05t}$

Step 4 : Check: $(Qe^{0.05t})' = LHS$

Step 5 : Replace LHS: $(Qe^{0.05t})' = 10e^{0.05t}$ and integrate $Qe^{0.05t} = 200e^{0.05t} + C$

Step 6 :Solve explicitly: $Q = 200 + Ce^{-0.05t}$

Step 7 : Use the initial value Q(0) = 10 to get 10 = 200 + C. That is, $Q(t) = 200 - 190e^{-0.05t}$ is the amount of salt in the tank at time *t*.

- The limiting amount can be found two different ways:
 - 1. The **limiting amount** is when the concentration of salt in the tank is equal to to the incoming concentration: $\lim_{t\to\infty} Q = 2 \times 100 = 200$ gr

2. Or $\lim_{t \to \infty} Q(t) = 200 - 190 \lim_{t \to \infty} e^{-0.05t} = 200$ gr

Let *T* be the **time** when Q(T) = 100 and solve

 $100 = 200 - 190e^{-0.05T}$ to get $T = -\frac{\ln(100/190)}{0.05} \approx$ 12.8371 minutes

Example 2

A tank of Capacity of 500 gal originally contains 200 gal of water with 100 oz of salt in solution. Water containing 1 oz/gal enters at rate of 3 gal/min. well mixed solution leaves at the rate 2 gal/min. Find the concentration at any time before the overflow.

After 200 min the process is stopped, and the fresh water is poured into the tank at the rate of 2 gal/min, with the mixture leaving at the same rate. Find the amount of salt in the tank at the end of an additional 200 min.

Solution:

- Let *Q* be the amount of salt in the tank. The volume of the liquid in the tank at time *t* is V(t) = 200 + t. The amount of salt coming in per minute is $3gal/min \times 10z/gal = 30z/min$. The amount of salt going out per minute is $2 \times \frac{Q}{V} = \frac{2Q}{200+t}oz/min$.
- The ode is $\frac{dQ}{dt} = 3 2\frac{Q}{200 + t}$ which is a linear ode; solve:
- Step 1 : standard form $\frac{dQ}{dt} + 2Q(\frac{1}{200+t}) = 3$
- Step 2 : Integrating factor $\mu(t) = e^{2\ln(200+t)} = (200+t)^2$
- Step 3 : **Multiply**: $(200+t)^2Q' + 2(200+t)Q = 3(200+t)^2$
- Step 4 : Check the left hand side: $(y(200 + t)^2)' = {}^?$ LHS \checkmark
- Step 5 : **Replace** LHS and **integrate** : $(Qe^{2\ln(200+t)})' = 3(200+t)^2$ gives $Q(200+t)^2 = (200+t)^3 + C$

Step 6 : **Explicit** solution: $Q = (200 + t) + c(200 + t)^{-2}$

Step 7 : **IVP**
$$Q(0) = 200 + c/200^2$$

 $Q(0) = 100 \text{ so } c = -100(200^2)$

So the IVP solution is $Q(t) = (200 + t) - \frac{4 \times 10^6}{(200 + t)^2}$ (Amount of salt at time *t*.)

If the tank was infinitely big, here we see that amount would approach infinity as $t \to \infty$ but since the tank is not infinitely big, that does not happen.

Concentration at any time: $C(t) = 1 - \frac{4 \times 10^6}{(200+t)^3}$ Here we see that the concentration approaches 1 as $t \to \infty$. But that is not possible neither since the tank is not endless.

Note that after 200 min, there will be Q(200) = 400 - 25 = 375 oz of salt in the tank.

Solution, Part two, time t + 200

• Let *Q* be the amount of salt in the tank. The volume of the liquid in the tank at time t + 200 is V = 400. The amount of salt coming in per min=0. The amount of salt going out per minute is $2 \times \frac{Q}{V} = \frac{2Q}{200+200}oz/min$.

• The ode is $\frac{dQ}{dt} = 0 - 2\frac{Q}{400}$ which is a linear ode; solve:

- Step 1 : standard form: $\frac{dQ}{dt} + Q(\frac{1}{200}) = 0$
- Step 2 : Integrating factor: $\mu(t) = e^{0.005t}$
- Step 3 : **Multiply:** $e^{0.005t}Q' + 0.005e^{0.005t}Q = 0$
- Step 4 : Check the left hand side: $(ye^{0.005t})' = {}^{?}$ LHS
- Step 5 : **Replace** LHS and **integrate**: $(Qe^{0.005t})' = 0$ gives $Qe^{0.005t} = c$

Step 6 : **Explicit** solution: $Q = ce^{-0.005t}$

Step 7 : **IVP** To find the initial value Q(0) = c

Q(0) = 375 so c = 375

So the IVP is $Q = 375e^{-0.005t}$ which is the amount of salt at time *t*.

If the tank was infinitely big, here we see that amount would approach infinity as $t \to \infty$ but since the tank is not infinitely big, that does not happen.

The amount of salt in the tank after additional 200 minutes, $Q(200) = 375e^{-0.005 \times 200} = 375e^{-1} \simeq 138$ oz