

Example 1

Consider a tank with volume 100 L is filled with a salt solution. Suppose a solution with $2 g / L$ of salt flows into the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. The solution in the tank is well-mixed. Solution flows out of the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. If initially there is 10 g of salt in the tank, how much salt will be in the tank as a function of time?

What is the limiting amount of salt in the tank?

At what time amount of salt in the tank is 100 g ?

Solution

- Let $Q(t)=$ The amount of salt inside the tank at time t.
- Amount of salt coming in $=5 \times 2=10 \mathrm{gr} / \mathrm{min}$
- Amount of salt leaving $=5 \times \frac{Q(t)}{100}=0.05 Q(t) \mathrm{gr} / \mathrm{min}$
- change in amount per minute $=$ amount coming in per minute - amount leaving per minute
- $\frac{d Q(t)}{d t}=10-0.05 Q(t)$
- You can use the method that we used for the falling objects but I recommend Linear First Order.

Step 1 : Standard form: $Q^{\prime}+0.05 Q=10$

Step $2: \mu(t)=e^{\int 0.05 d t}=e^{0.05 t}$

Step 3 : Multiply: $Q e^{0.05 t}+0.05 e^{0.05 t} Q=10 e^{0.05 t}$

Step 4 : Check: $\left(Q e^{0.05 t}\right)^{\prime}=$ LHS

Step 5 : Replace LHS: $\left(Q e^{0.05 t}\right)^{\prime}=10 e^{0.05 t}$ and integrate

$$
Q e^{0.05 t}=200 e^{0.05 t}+C
$$

Step 6 :Solve explicitly: $Q=200+C e^{-0.05 t}$

Step 7 : Use the initial value $Q(0)=10$ to get $10=200+C$. That is, $Q(t)=200-190 e^{-0.05 t}$ is the amount of salt in the tank at time t.

- The limiting amount can be found two different ways:

1. The limiting amount is when the concentration of salt in the tank is equal to to the incoming concentration: $\lim _{t \rightarrow \infty} Q=2 \times 100=200 \mathrm{gr}$
2. Or $\lim _{t \rightarrow \infty} Q(t)=200-190 \lim _{t \rightarrow \infty} e^{-0.05 t}=200 \mathrm{gr}$

Let T be the time when $Q(T)=100$ and solve
$100=200-190 e^{-0.05 T}$ to get $T=-\frac{\ln (100 / 190)}{0.05} \simeq$
12.8371 minutes

Example 2

A tank of Capacity of 500 gal originally contains 200 gal of water with 100 oz of salt in solution. Water containing $1 \mathrm{oz} / \mathrm{gal}$ enters at rate of $3 \mathrm{gal} / \mathrm{min}$. well mixed solution leaves at the rate $2 \mathrm{gal} / \mathrm{min}$. Find the concentration at any time before the overflow.

After 200 min the process is stopped, and the fresh water is poured into the tank at the rate of $2 \mathrm{gal} / \mathrm{min}$, with the mixture leaving at the same rate. Find the amount of salt in the tank at the end of an additional 200 min .

Solution:

- Let Q be the amount of salt in the tank. The volume of the liquid in the tank at time t is $V(t)=$ $200+t$. The amount of salt coming in per minute is $3 \mathrm{gal} / \mathrm{min} \times 1 \mathrm{oz} / \mathrm{gal}=3 \mathrm{oz} / \mathrm{min}$. The amount of salt going out per minute is $2 \times \frac{Q}{V}=\frac{2 Q}{200+t}$ oz/ min.
- The ode is $\frac{d Q}{d t}=3-2 \frac{Q}{200+t}$ which is a linear ode; solve:

Step 1 : standard form $\frac{d Q}{d t}+2 Q\left(\frac{1}{200+t}\right)=3$
Step 2 : Integrating factor

$$
\mu(t)=e^{2 \ln (200+t)}=(200+t)^{2}
$$

Step 3 : Multiply: $(200+t)^{2} Q^{\prime}+2(200+t) Q=3(200+t)^{2}$
Step 4 : Check the left hand side: $\left(y(200+t)^{2}\right)^{\prime}=^{?}$ LHS \checkmark

Step 5 : Replace LHS and integrate : $\left(Q e^{2 \ln (200+t)}\right)^{\prime}=$ $3(200+t)^{2}$ gives $Q(200+t)^{2}=(200+t)^{3}+C$

Step 6 : Explicit solution: $Q=(200+t)+c(200+t)^{-2}$
Step 7 : IVP $Q(0)=200+c / 200^{2}$
$Q(0)=100$ so $c=-100\left(200^{2}\right)$
So the IVP solution is $Q(t)=(200+t)-\frac{4 \times 10^{6}}{(200+t)^{2}}$ (Amount of salt at time t.) If the tank was infinitely big, here we see that amount would approach infinity as $t \rightarrow \infty$ but since the tank is not infinitely big, that does not happen.

Concentration at any time: $C(t)=1-\frac{4 \times 10^{6}}{(200+t)^{3}}$ Here we see that the concentration approaches 1 as $t \rightarrow \infty$. But that is not possible neither since the tank is not endless.

Note that after 200 min , there will be $Q(200)=400-$ $25=375$ oz of salt in the tank.

Solution, Part two, time $t+200$

- Let Q be the amount of salt in the tank. The volume of the liquid in the tank at time $t+200$ is $V=400$. The amount of salt coming in per $\min =0$. The amount of salt going out per minute is $2 \times \frac{Q}{V}=\frac{2 Q}{200+200} \mathrm{oz} / \mathrm{min}$.
- The ode is $\frac{d Q}{d t}=0-2 \frac{Q}{400}$ which is a linear ode; solve:

Step 1 : standard form: $\frac{d Q}{d t}+Q\left(\frac{1}{200}\right)=0$
Step 2 : Integrating factor: $\mu(t)=e^{0.005 t}$
Step 3 : Multiply: $e^{0.005 t} Q^{\prime}+0.005 e^{0.005 t} Q=0$
Step 4 : Check the left hand side: $\left(y e^{0.005 t}\right)^{\prime}={ }^{?}$ LHS \checkmark

Step 5 : Replace LHS and integrate: $\left(Q e^{0.005 t}\right)^{\prime}=0$ gives $Q e^{0.005 t}=c$

Step 6 : Explicit solution: $Q=c e^{-0.005 t}$
Step 7 : IVP To find the initial value $Q(0)=c$

$$
Q(0)=375 \text { so } c=375
$$

So the IVP is $Q=375 e^{-0.005 t}$ which is the amount of salt at time t.

If the tank was infinitely big, here we see that amount would approach infinity as $t \rightarrow \infty$ but since the tank is not infinitely big, that does not happen.

The amount of salt in the tank after additional 200 minutes, $Q(200)=375 e^{-0.005 \times 200}=375 e^{-1} \simeq 138 \mathrm{oz}$

