Autonomous Equations:

- $y^{\prime}=f(y)$ is an autonomous equation. That is, an equation where derivative with respect to t of $y, \frac{d y}{d t}$, only depends on the value of y.
- We learned earlier that this type of equations give integral curves that are parallel for each initial value on any horizontal line. 因
- Let f be such that $y=a$ is a zero of a, then $y=a$ is an equilibrium solution to $y^{\prime}=f(y)$.
- Now if $y^{\prime}=k\left(y-a_{1}\right)\left(y-a_{2}\right) \ldots\left(y-a_{n}\right)$, then we can illustrate the direction of the slops by finding the sign of f on the y axis. We place upward or downward vectors, depending on the sign of f, above or below each equilibrium. We call this illustration, the phase diagram.
*To observe this again, use the directional field app at: https://www.geogebra.org/m/bgczfpUR

Example:

Let $f(y)=(y-1)(y-2)$ Then $f>0$ for $(-\infty, 1)$, the lower part of diagram, $f<0$ for $(1,2)$, the middle part of the diagram, and $f>0$ for $(2, \infty)$, the upper part of the diagram.

Stability of Equilibria

- An stable equilibrium is where other solutions are converging to as $t \rightarrow \infty$.
- If a solution is stable, then the solution does not change drastically with small change of initial value.
- An unstable solution is the one where the solution diverges away as $t \rightarrow \infty$.
- An equilibrium can be stable from above or below and unstable from the other way.

