Autonomous Equations:

- y' = f(y) is an autonomous equation. That is, an equation where derivative with respect to t of y, $\frac{dy}{dt}$, only depends on the value of y.
- We learned earlier that this type of equations give integral curves that are parallel for each initial value on any horizontal line.
- Let f be such that y = a is a zero of a, then y = a is an equilibrium solution to y' = f(y).
- Now if $y' = k(y a_1)(y a_2)...(y a_n)$, then we can illustrate the direction of the slops by finding the sign of f on the y-axis. We place upward or downward vectors, depending on the sign of f, above or below each equilibrium. We call this illustration, the phase diagram.

^{*}To observe this again, use the directional field app at: https://www.geogebra.org/m/bgczfpUR

Example:

Let f(y) = (y-1)(y-2) Then f > 0 for $(-\infty,1)$, the lower part of diagram, f < 0 for (1,2), the middle part of the diagram, and f > 0 for $(2,\infty)$, the upper part of the diagram.

Stability of Equilibria

- An stable equilibrium is where other solutions are converging to as $t \to \infty$.
- If a solution is stable, then the solution does not change drastically with small change of initial value.
- An unstable solution is the one where the solution diverges away as $t \to \infty$.
- An equilibrium can be stable from above or below and unstable from the other way.

