Bernoulli equations: Steps

Recognition : An equation of the form $y' + p(t)y = g(t)y^n$ Where $n \neq 0$ and $n \neq 1$.*

Substitution : Use *v*-substitute: $v = y^{1-n}$ and use chain rule to take the derivative $v' = (1-n)y^{-n}y'$

Next divide every term of the original equation by y^n to get:

$$y'y^{-n} + p(t)y^{1-n} = g(t)$$
 Now replace $y'y^{-n}$ by $\frac{v'}{1-n}$
and y^{1-n} by v to get: $\frac{v'}{1-n} + p(t)v = g(t)$

Linear Eq: Multiply by 1-n to get v' + (1-n)p(t)v = (1-n)g(t)which is a linear equation. Solve for v.

Back-sub: Replace v by y^{1-n} . Then solve for y.

n = 0 and n = 1 means that the equation a linear equation.

• Solve
$$y' = 5y - 5xy^3$$
, $y(0) = 1$.

Solution:

Recognition: $y' - 5y = -5xy^3$ This is a Bernoulli equation with n = 3, p(x) = -5, q(x) = -5x.

Choose Sub. : We make the substitution.

Divide both sides by the highest power of y.

 $\frac{y'}{y^3} - \frac{5}{y^2} = -5x$ $v = y^{-2}$ (You can either use formula 1 - n = 1 - 3 or the power of y in the second term f the equation.) Applying the chain rule, we have

$$v' = -2y^{-3}y'$$

Solving for y', we have

$$y' = -\frac{1}{2}y^3v'$$

Substitute : Substituting for y' in the differential equation we have

 $-\frac{1}{2}v' - 5y^{-2} = -5x$ Dividing both sides by -.5, we have $v' + 10y^{-2} - 10x$ Note that $\frac{1}{y^2} = v$. Hence, we have v' + 10v = 10x

Linear : Solve the linear ode for the dependent variable v. The solution is (I am omitting this part since you are proficient now.)

$$v' + 10v = 10x \implies v = Ce^{-10x} + x - \frac{1}{10}$$

Back-sub. : Substituting $v = 1/y^2$, we have $y^{-2} = Ce^{-10x} + x - \frac{1}{10}$ (Implicit General Sol.)

$$y = \pm \sqrt{\frac{1}{Ce^{-10x} + x - \frac{1}{10}}}$$
 (Explicit General Sol.)

IVP :
$$1 = \pm \sqrt{\frac{1}{Ce^{-10(0)} + (0) - \frac{1}{10}}} \implies C = \frac{11}{10}$$
 and $+$ sign.
So $y = \sqrt{\frac{1}{\frac{11}{10}e^{-10x} + x - \frac{1}{10}}}$ (IVP solution)

• Solve with Bernoulli method $y' + 2xy + xy^4 = 0$. Solution:

Bernoulli Form $: y' + 2xy = -xy^4$

Divide by
$$y^4$$
 : $\frac{y'}{y^4} + 2\frac{x}{y^3} = -x$.

Substitution : $v = y^{-3} \implies v' = -3y^{-4}y'$

$$\frac{-v'}{3} + 2xv = -x$$

Linear Form : v' - 6xv = 3x

$$\mu(x) : \mu(x) = e^{-3x^2}.$$

$$e^{-3x^2}y = \int 3xe^{-3x^2} dx \text{ (Use u-sub } u = -3x^2.)$$

$$y^{-3} = -1/2 + Ce^{3x^2}$$

Also note that this equation was also Separable. I would like to note that we generally choose separable method over Bernoulli method^{*} but in this case integral associated with separable method is somewhat difficult.

 $-\frac{dy}{x^4+2x} = xdx$

Integrating the left hand side is not as easy and requires a fairly complicated partial fraction. Try using wolfram to see that.

*I also liked this to be solved as a Bernoulli equation because of its simplicity as a Bernoulli equation.