Bernoulli equations: Steps

Recognition : An equation of the form $y^{\prime}+p(t) y=g(t) y^{n}$ Where $n \neq 0$ and $n \neq 1$.*

Substitution: Use v-substitute: $v=y^{1-n}$ and use chain rule to take the derivative $v^{\prime}=(1-n) y^{-n} y^{\prime}$

Next divide every term of the original equation by y^{n} to get:
$y^{\prime} y^{-n}+p(t) y^{1-n}=g(t)$ Now replace $y^{\prime} y^{-n}$ by $\frac{\nu^{\prime}}{1-n}$ and y^{1-n} by v to get: $\frac{v^{\prime}}{1-n}+p(t) \nu=g(t)$

Linear Eq: Multiply by $1-n$ to get $v^{\prime}+(1-n) p(t) \nu=(1-n) g(t)$ which is a linear equation. Solve for v.

Back-sub: Replace v by y^{1-n}. Then solve for y.

* $n=0$ and $n=1$ means that the equation a linear equation.
- Solve $y^{\prime}=5 y-5 x y^{3}, y(0)=1$.

Solution:

Recognition: $y^{\prime}-5 y=-5 x y^{3}$ This is a Bernoulli equation with $n=3, p(x)=-5, q(x)=-5 x$.

Choose Sub. : We make the substitution.
Divide both sides by the highest power of y.
$\frac{y^{\prime}}{y^{3}}-\frac{5}{y^{2}}=-5 x$
$v=y^{-2}$ (You can either use formula $1-n=1-$ 3 or the power of y in the second term f the equation.)
Applying the chain rule, we have

$$
v^{\prime}=-2 y^{-3} y^{\prime}
$$

Solving for y^{\prime}, we have
$y^{\prime}=-\frac{1}{2} y^{3} v^{\prime}$
Substitute : Substituting for y^{\prime} in the differential equation we have
$-\frac{1}{2} v^{\prime}-5 y^{-2}=-5 x$
Dividing both sides by -.5 , we have
$v^{\prime}+10 y^{-2}-10 x$
Note that $\frac{1}{y^{2}}=v$. Hence, we have
$v^{\prime}+10 v=10 x$
Linear: Solve the linear ode for the dependent variable v. The solution is (I am omitting this part since you are proficient now.)

$$
v^{\prime}+10 v=10 x \Longrightarrow v=C e^{-10 x}+x-\frac{1}{10}
$$

Back-sub. : Substituting $v=1 / y^{2}$, we have

$$
y^{-2}=C e^{-10 x}+x-\frac{1}{10} \text { (Implicit General Sol.) }
$$

$y= \pm \sqrt{\frac{1}{C e^{-10 x}+x-\frac{1}{10}}}$ (Explicit General Sol.)
IVP : $1= \pm \sqrt{\frac{1}{C e^{-10(0)}+(0)-\frac{1}{10}}} \Longrightarrow C=\frac{11}{10}$ and + sign.
So $y=\sqrt{\frac{1}{\frac{11}{10} e^{-10 x}+x-\frac{1}{10}}}$ (IVP solution)

- Solve with Bernoulli method $y^{\prime}+2 x y+x y^{4}=0$. Solution:

Bernoulli Form : $y^{\prime}+2 x y=-x y^{4}$
Divide by $y^{4}: \frac{y^{\prime}}{y^{4}}+2 \frac{x}{y^{3}}=-x$.
Substitution : $v=y^{-3} \Longrightarrow v^{\prime}=-3 y^{-4} y^{\prime}$

$$
\frac{-v^{\prime}}{3}+2 x v=-x
$$

Linear Form : $v^{\prime}-6 x v=3 x$

$$
\begin{aligned}
& \mu(x): \mu(x)=e^{-3 x^{2}} . \\
& \left.\quad e^{-3 x^{2}} y=\int 3 x e^{-3 x^{2}} d x \text { (Use u-sub } u=-3 x^{2} .\right) \\
& y^{-3}=-1 / 2+C e^{3 x^{2}}
\end{aligned}
$$

Also note that this equation was also Separable. I would like to note that we generally choose sep-
arable method over Bernoulli method* but in this case integral associated with separable method is somewhat difficult.
$-\frac{d y}{x^{4}+2 x}=x d x$
Integrating the left hand side is not as easy and requires a fairly complicated partial fraction. Try using wolfram to see that.
*I also liked this to be solved as a Bernoulli equation because of its simplicity as a Bernoulli equation.

