Euler-Cauchy ODE

The general form of a homogeneous Euler ode is:
$y^{\prime \prime}+\frac{p}{t} y^{\prime}+\frac{q}{t^{2}}=0$
where p and q are constants. The coefficients of y ' and y are discontinuous at $t=0$. So we restrict the solution to $t>0$ or $t<0$.

The Process:

Note that this is one of those examples which has $y(\nu(t))$.

Use a new independent variable $v=\ln |t|$

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{d y}{d v} \frac{d v}{d t}=\frac{1}{t} \frac{d y}{d v} \\
& \frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{1}{t} \frac{d y}{d v}\right)=\left(\frac{1}{t} \frac{d^{2} y}{t v^{2}} \frac{d v}{d t}-\frac{1}{t^{2}} \frac{d y}{d v}\right)=\frac{1}{t^{2}}\left(\frac{d^{2} y}{d v^{2}}-\frac{d y}{d v}\right)
\end{aligned}
$$

That is, $\frac{1}{t^{2}}\left(\frac{d^{2} y}{d v^{2}}+(p-1) \frac{d y}{d v}+q y(v)\right)=0$
$y^{\prime \prime}+(p-1) y^{\prime}+q=0$
(Here the independent variable is v.)

Solve this equation and remember that the solution is with respect to v. Replace v by $\ln |t|$.

Example:

Solve $t^{2} y^{\prime \prime}-5 t y^{\prime}+13 y=0$

Solution:

The equation becomes : $\frac{d^{2} y}{d v^{2}}-6 \frac{d y}{d v}+13 y=0$
The roots are $3 \pm 2 i$
so the solution is $y(v)=C_{1} e^{3 v} \cos (2 v)+C_{2} e^{3 v} \sin (2 v)$

$$
\begin{aligned}
& y(t)=C_{1} e^{3 \ln |t|} \cos (2 \ln |t|)+C_{2} e^{3 \ln |t|} \sin (2 \ln |t|) \\
& y(t)=C_{1}|t|^{3} \cos (2 \ln |t|)+C_{2}|t|^{3} \sin (2 \ln |t|)
\end{aligned}
$$

Example:

$t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=t^{3}, \quad t>0$.

Solution :

- Change of variable gives $v=\ln |t|$.
- New homogeneous equation is $y^{\prime \prime}-3 y^{\prime}+2 y=0$ which gives $y_{h}=C_{1} e^{\ln (t)}+C_{2} e^{2 \ln (t)}$
- Homogeneous Solution: $y_{h}=C_{1} t+C_{2} t^{2}$
- $W(t)=t^{2}$
- $\nu_{1}=\frac{t^{2}}{2}$ and $\nu_{2}=t$
- Use variation of parameters : $y_{p}=-\frac{t^{3}}{2}+t^{3}=\frac{t^{3}}{2}$
- General solution: $y=C_{1} t+C_{2} t^{2}+\frac{t^{3}}{2}$

Euler-Cauchy ODEs

- The general form of a homogeneous Euler ode is:

$$
t^{2} y^{\prime \prime}+p t y^{\prime}+q y=0 \quad \text { or } y^{\prime \prime}+\frac{p}{t} y^{\prime}+\frac{q}{t^{2}} y=0
$$

where p and q are constants. We often assume $t>0$ to preserve the continuity of the coefficients.

- Choose $v=\ln |t|$
- Rewrite the equation with v as the independent variable:

$$
\frac{d^{2} y}{d v^{2}}+(p-1) \frac{d y}{d v}+q y(\nu)=0
$$

- That is solve $y^{\prime \prime}+(p-1) y^{\prime}+q y=0$ and instead of t in the homogeneous solution, put in ν. and then replace v by its value $\ln |t|$ and simplify if possible.
- That is, the characteristic equation is going to be $r^{2}+(p-1) r+q=0$

There will be 3 cases involving r :

1. For two distinct roots: r_{1} and r_{2} :
$y(\nu)=C_{1} e^{r_{1} v}+C_{2} e^{r_{2} v}$
Replace v by $\ln |t|$ to get: $y(t)=C_{1} e^{r_{1} \ln |t|}+$ $C_{2} e^{r_{2} \ln |t|}$
Simplify to get: $C_{1}|t|^{r_{1}}+C_{2}|t|^{r_{2}}$
2. For the repeated root r :
$y(\nu)=C_{1} e^{r v}+C_{2} \nu e^{r v}$
Replace v by $\ln t$ to get: $y(t)=C_{1} e^{r \ln |t|}+C_{2}(\ln |t|) e^{r \ln |t|}$ Simplify to get: $C_{1}|t|^{r}+C_{2}|t|^{r} \ln |t|$
3. For the complex conjugate roots $r=\lambda \pm \omega i$:
$y(\nu)=C_{1} e^{\lambda v} \cos (\omega v)+C_{2} e^{\lambda v} \sin (\omega v)$
Replace v by $\ln |t|$ to get: $y(t)=C_{1} e^{\lambda \ln |t|} \cos (\omega \ln |t|)+$ $C_{2} e^{\lambda \ln |t|} \sin (\omega \ln |t|)$

Simplify to get: $C_{1}|t|^{\lambda} \cos (\omega \ln |t|)+C_{2}|t|^{\lambda} \sin (\omega \ln |t|)$

