Procedure for Solving Linear Second-Order ODE

We often consider $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ and we call the function on the right hand side, the forcing function.

The procedure for non-homogeneous solving linear second-order ode has two steps:

1. Find the general solution of the homogeneous problem:
$y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$
According to the theory for linear differential equations, the general solution of the homogeneous problem is

$$
y_{h}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where C_{1} and C_{2} are constants and y_{1} and y_{2} are any two linearly independent solutions to the homogeneous equation.
2. Find a particular solution of the non-homogeneous problem:
$y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$
The particular solution is any solution of the nonhomogeneous problem and is denoted $y_{p}(t)$.

The general solution of the non-homogeneous problem is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)+y_{p}(t)
$$

The key point to note is that all possible solutions to a linear second-order ode can be obtained from two linearly independent solutions to the homogeneous problem and any particular solution.

Here is an example. Consider the ode
$y^{\prime \prime}+3 y^{\prime}+2 y=6 e^{t}$
The homogeneous equation is
$y^{\prime \prime}+3 y^{\prime}+2 y=0$
Solve for homogeneous solution to get the fundamental set of $y_{1}=e^{-t}$ and $y_{2}=e^{-2 t}$ are solutions to the homogeneous equation.

A particular solution of the non-homogeneous equation is e^{t}.* Hence, the general solution of the ode is

$$
y(t)=C_{1} e^{-t}+C_{2} e^{-2 t}+e^{t}
$$

where C_{1} and C_{2} are constants.
*We show this later.

Note: The difference between two particular solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ is a homogeneous solution.

Proof:

Let $y_{p 1}$ and $y_{p 2}$ be two particular solutions of the ode. Then plug in $\left(y_{p 1}-y_{p 2}\right)$ in the LHS:

$$
\begin{aligned}
& \text { LHS }=\left(y_{p 1}-y_{p 2}\right)^{\prime \prime}+p(t)\left(y_{p 1}-y_{p 2}\right)^{\prime}+q(t)\left(y_{p 1}-y_{p 2}\right) \\
& =\left(y_{p 1}^{\prime \prime}+p(t) y_{p 1}^{\prime}+q(t) y_{p 1}\right)-\left(y_{p 2}^{\prime \prime}+p(t) y_{p 2}^{\prime}+q(t) y_{p 2}\right) \\
& =f(t)-f(t)=0 \checkmark
\end{aligned}
$$

\square

Any solution that satisfies the non-homogeneous solution is called a particular solution.*
*This could be any IVP solution to the equation.

