
Solving Homogeneous 2nd order linear odes
with constant coefficients.

Summary of Theorems:

For enough continuity within the coefficients, every ho-
mogeneous 2nd order linear ode, if we find two lin-
early independent solutions, y1 and y2, then we can
find the unique solution for every ivp by finding the co-
efficients of C1y1+C2y2.

We call {y1, y2} is called the fundamental set of solu-
tions for the ode.

Finding the two linearly independent solutions is pos-
sible using different methods:

• Reduction of order.

• Series.

One or both will be assigned as homework problems.



Constant-Coefficient Homogeneous ODE

A constant-coefficient homogeneous second-order ode
is of the form

ay ′′(t )+by ′(t )+ c y(t ) = 0

where a, b and c are constants. Recall that the gen-
eral solution is

y(t ) =C1y1(t )+C2y2(t )

where C1 and C2 are constants and y1(t ) and y2(t )

are any two linearly independent solutions of the ode.
Through methods that we have mentioned, we get the
following results for the solutions.



Definition:

Consider the equation ay ′′+by ′+ c y = 0.

The characteristic equation of the equation is the
equation ar 2+br + c = 0 .

The solution to ode depends on the roots of the char-
acteristic equation.

Distinct Roots:

From the methods mentioned before, we know that
the solution looks like: y = er t . Where r is a constant.
To find r , plug in er t in the ode. If y = er t , then y ′ =
r (er t ) and y ′′= r 2(er t ). Substituting these into the ode,
we have

ar 2er t +br er t + cer t = er t (ar 2+br + c) = 0

This equation is satisfied if er t = 0 or r 2 + pr + q = 0.
But er t 6= 0.



Hence, r must satisfy the equation

ar 2 +br + c = 0 which is the characteristic equation of
the ode. That is, r is a root for characteristic equation.

Repeated Roots

Now if we repeated roots for r , then y = ter t is addi-
tionally a solution of the equation:

y ′= er t + r ter t

y ′′= 2r er t + r 2ter t

So a(2r er t + r 2ter t )+b(er t + r ter t )+ cter t = 0

Regroup the terms: ter t (ar 2+br +c)+(2ar er t +ber t ) =
0+2aer t (r + b

2a ) = 0

For repeated roots: r =− b
2a .

*

*The second solution can be found using a method called vari-
ation of parameter. Since er t is a solution, we may find
another solution in the form ver t . Plug in the ode to get:
av ′′+ (b+2ar )v ′ = 0’ That is av ′′ = 0 That is, v = t which explains
the solution.



Complex Conjugate Roots

Suppose that the characteristic polynomial has com-
plex roots a + i b and a − i b, where a and b are real.
These are distinct roots, so the the general solution
can be written:

y(t ) =C1e(a+i b)t +C2e(a−i b)t

The problem with writing the solution in this form is
that it involves complex-valued functions. It is possi-
ble to re-express the general solution in terms of two
linearly independent real-valued functions.

To be able to do that, we use Euler’s Identity.

Euler’s identity:

eiω= cos(ω)+ i sin(ω)



Exponential functions were originally defined for real
numbers. To be able to define them for complex num-
bers, the new function was build so the many proper-
ties of exponential functions over real domain is pre-
served.

So the definition was made possible by Taylor series.

The Taylor series for exponential about x = 0 is ex =
∞∑

n=0

xn

n!
. So we define the complex version of exponen-

tial function using Taylor’s Series.

How to derive Euler identity?

Plug in x = i t to get: ei t =
∞∑

n=0

(i t )n

n!

Now remember i 2 =−1, i 3 =−i , i 4 = 1,...

So ei t =
∞∑

n=0

(i t )n

n!
=

∞∑
n=0

(−1)nt 2n

(2n)!
+ i

∞∑
n=0

(−1)nt 2n+1

(2n +1)!

First one is the Taylor series for cos(t ) and the second
one is the Taylor series for sin t .



So ei t = cos(t )+ i sin(t ).

Now What is eiωt = cos(ωt )+ i sin(ωt ).

That is,

e(λ+iω)t = eλt eiωt = eλt
(

cos(ωt )+ i sin(ωt )
)

= eλt cos(ωt )+ i eλt sin(ωt )

Similarly, we have

e(λ−iω)t = eλt e−iωt = eλt
(

cos(ωt )− i sin(ωt )
)

Substituting, these two expressions into the general
solution to get:

y(t ) =C1eλt
(

cos(ωt )+i sin(ωt )
)
+C2eλt

(
cos(ωt )−i sin(ωt )

)



Choose C1 = 0.5 and C2 = 0.5. This yields the solution:

y1(t ) = eλt cos(ωt )

Now choose C1 = i 0.5 and C2 = −i 0.5. This yields the
solution:

y2(t ) = eλt sin(ωt )

Both of these functions are solutions to the original
ode. In addition, they are linearly independent, since
they are not multiples of each other. So they form a
fundamental set of solution for the ode. So we can
write:

y(t ) = D1eλt cos(ωt )+D2eλt sin(ωt ) is a general solu-
tion to the ode,

where D1 and D2 are constant real numbers.



1. Characteristic Polynomial has Distinct Roots

Example: Solve

y ′′−3y ′−18y = 0, y(0) = 1 ,y ′(0) = 2.

Solution:

The characteristic polynomial is

r 2−3r −18 = (r −6)(r +3), which has roots r = 6 and
r =−3.

The general solution is : y = C1e6t +C2e−3t and
plug in y(0) = 1 to get C1+C2 = 1.

Take the derivative of the solution: y ′ = 6C1e6t −
3C2e−3t and y ′(0) = 2 to get 6C1−3C2 = 2.

Solve
{

C1+C2 = 1
6C1−3C2 = 2

That is C1 = 5
9 and C2 = 4

9.

IVP: y = 5

9
e6t + 4

9
e−3t



2. Characteristic Polynomial has a Double Root

Example:

Solve y ′′+6y ′+9y = 0, y(0) = 1 and y ′(0) = 2

Solution:

The characteristic polynomial is r 2 + 6r + 9 = (r +
3)2, which has a double root −3. The general so-
lution is

y(t ) =C1e−3t +C2te−3t and plug in the initial value
y(0) = 1 to get C1 = 1.

Take the derivative of the solution: y ′(t ) =−3C1e−3t−
3C2te−3t +C2e−3t and plug in the y ′(0) = 2 to get

−3C1+C2 = 2.{
C1 = 1

−3C1+C2 = 2

C1 = 1 and 5.

So the solution is IVP: y = e−3t +5te−3t



3. Complex-Conjugate Roots

Example:

Solve y ′′+4y = 0 , y(0) = 2, y ′(0) = 6.

Solution:

The characteristic equation is: r 2 + 4 = 0 which
gives solutions r =±2i .

The general solution is y(t ) =C1 cos(2t )+C2 sin(2t ).

Plug in y(0) = 2 to get C1 = 2.

Find the derivative of the solution: y ′(t ) =−2C1 sin(2t )+
2C2 cos(2t ). Plug in y ′(0) = 6. Gives C2 = 3.

IVP is: y = 2cos(2t )+3sin(2t )



Example:

y ′′−6y ′+13y = 0, y(π/4) = 1 and y ′(π/4) = 3

Solution: The characteristic polynomial is

r 2 −6r +13. Using the quadratic formula, we find that
the roots are 3+2i and 3−2i . This gives y1 = e3t cos(2t )

and y2 = e3t sin(2t ).

The general solution is:

y(t ) =C1e3t cos(2t )+C2e3t sin(2t )

Plug in y(π/4) = 1 to get C1e3π/4 = 1 which gives C2 =
e−3π/4.



The derivative of the solution is:

y = 3C1e3t cos(2t )−2C1e3t sin(2t )+3C2e3t sin(2x)+2C2e3t cos(2t )

plug in y ′(π/4) =: 3C2e3π/4−2C1e3π/4 = 3

Solve using the value for C1:

C2 = e−3π/4 and C1 = 0.

So the solution is y(t ) = e−3π/4e3t sin(2t )



Definition:

Consider the equation ay ′′+by ′+ c y = 0.

The characteristic equation is ar 2+br + c = 0 .

Solve the quadratic equation: r = −b ±
√

b2−4ac

2a
.

Then depending on the type of the roots, one of the
following options gives the solution:

• Characteristic polynomial has distinct roots r1

and r2, then the general solution is yh =C1er1t +C2er2t

• Characteristic polynomial has a repeated root r ,
then the general solution is yh =C1er t +C2ter t

• Characteristic polynomial has complex conjugate
roots: λ± iω, then the general solution is:

yh =C1eλt cos(ωt )+C2eλt sin(ωt )



If the equation is an initial value problem:

ay ′′+by ′+ c y = 0, y(t0) = a, y ′(t0) = b

• Plug in the initial value in the general solution. You
will end up with an equation of C1 and C2.

• Take the first derivative of the general equation
and plug in the second initial value.

• You will find a second equation of C1 and C2.

• Solve the system for C1 and C2. Plug back into
the general solution.



Certain type of homogeneous linear second-order ode
have closed form solutions. We will consider two classes:

1. Constant-coefficient ode:

y ′′+py ′+q y = 0

p(t ) and q(t ) are constants.

2. Euler-Cauchy ode:

y ′′+ p
t y ′+ q

t 2 y = 0

p and q are constants.

This set of notes explained the first method.


