Introduction to Second Order Linear ODEs

Definitions: A linear second-order ODE has the form:

$$
A(t) y^{\prime \prime}(t)+P(t) y^{\prime}(t)+Q(t) y(t)=F(t)
$$

On any interval where $A(t)$ is not equal to 0 , the above equation can be divided the entire equation by $A(t)$ to get the standard form:*

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=f(t)
$$

The equation is called homogeneous ${ }^{\dagger}$ if $f(t)=0$. Otherwise, it is called non-homogeneous and $f(t)$ is called the forcing function.
*That is, $p(t)=\frac{P(t)}{A(t)}, q(t)=\frac{Q(t)}{A(t)}$ and $f(t)=\frac{F(t)}{A(t)}$.
${ }^{\dagger}$ The homogeneous equation looks like

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

A second-order differential equation may have initial conditions or boundary conditions. Initial conditions are in the form: $\left\{\begin{array}{l}\mathbf{y}\left(t_{0}\right)=y_{0} \\ \mathbf{y}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}\end{array}\right.$. Boundary conditions might be of the form: $\left\{\begin{array}{l}y\left(t_{0}\right)=a \\ y\left(t_{1}\right)=b\end{array}\right.$. In this course, we discuss the initial conditions.

To be able to explain all solutions to a second order ode, we need to discuss a few theorems.

Theorem: (Superposition)

Let y_{1} and y_{2} be two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then $C_{1} y_{1}+C_{2} y_{2}$ is also a solution to the equation.
y_{1} and y_{2} are solutions so $\left\{\begin{array}{l}y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \\ y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0\end{array}\right.$
Multiply the first row by C_{1} and the second row by C_{2} :
$\left\{\begin{array}{l}C_{1} y_{1}^{\prime \prime}+p(t) C_{1} y_{1}^{\prime}+q(t) C_{1} y_{1}=0 \\ C_{2} y_{2}^{\prime \prime}+p(t) C_{2} y_{2}^{\prime}+q(t) C_{2} y_{2}=0\end{array}\right.$
Add both sides and regroup based on the derivative order.
$\left(C_{1} y_{1}^{\prime \prime}+C_{2} y_{2}^{\prime \prime}\right)+p(t)\left(C_{1} y_{1}^{\prime}+C_{2} y_{2}^{\prime}\right)+q(t)\left(C_{1} y_{1}+C_{2} y_{2}\right)=0$.

That is, $\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime \prime}+p(t)\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime}+q(t)\left(C_{1} y_{1}+C_{2} y_{2}\right)=0$ The later proves the theorem.

Theorem: (Existence and Uniqueness)

For the initial value problem, $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ and $\left\{\begin{array}{l}\mathbf{y}\left(t_{0}\right)=y_{0} \\ \mathbf{y}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}\end{array}\right.$ if $p(t), q(t)$ and $f(t)$ are continuous on some interval (a, b) containing t_{0}, then there exists a unique solution $y(t)$ to the ode on the interval (a, b).

Definition: $y_{1}, y_{2}, \ldots \quad y_{n}$ are linearly independent if and only if "at least one of $C_{1}, C_{2}, \ldots, C_{n}$ is none-zero implies $C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{n} y_{n} \neq 0$.

We can infer that y_{1}, y_{2} are linearly independent if and only if they are not multiple of each other.

Theorem: (Space of Solutions)

Let y_{1} and y_{2} be two linearly independent solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, on an interval where p and q are continuous, then every solution to the equation is of the form $y=C_{1} y_{1}+C_{2} y_{2}$.

The set $\left\{y_{1}, y_{2}\right\}$ is called a fundamental set of solutions for the ode.

Summary:

For enough continuity within the coefficients, every homogeneous 2nd order linear ode, if we find two linearly independent solutions, y_{1} and y_{2}, then we can find the unique solution for every ivp by finding the coefficients of $C_{1} y_{1}+C_{2} y_{2}$.

