
Spring-Mass Systems

Equilibrium

Fg = mg

Fs

u

Motionless Fg = mg

Fs

Equilibrium

u

Hooks Law The force from the spring is proportional to elon-
gation/contraction of the spring.

Equilibrium is where kL = mg . That is where the Hook’s force
and the gravitational force are neutralized with each
other.



Where k is the constant of the hooks Law and L is
the elongation of the spring when in Equilibrium
position.

u is the disposition from the equilibrium position and
is a function of time. *

Forces we assume that upward direction is positive. The
gravitational force is in the negative direction.

Fs is the spring force. When L−u > 0, Fs = k(L−u) > 0
and when L−u < 0, the direction of Fs = k(L−u) <
0. Note that for u > 0, the elongation is smaller
than L and when u < 0, the elongation is more
than L.

Damping in smaller velocities is proportional to the velocity.
Fd =−γu′ > 0 when u′ < 0 and Fd and Fd =−γu′ <
0 when u′> 0.

*Most books denote it by x but I saw a book using u and I noticed
the last term of the equation has a good ring to it.



Newton law ma =−mg +k(L−u)−γu′+Fexternal

But kL−mg = 0 so

mu′′+γu′+ku = Fexternal

Example:

A mass weighing 3 lbf stretches a spring 3 inches. If
the mass is pushed downward, stretching the spring
by 1 inch and set in motion by a upward velocity of
2 ft/sec and if there is no damping, find the position†

u(t ) at any time t . Determine the frequency, the period
and the amplitude of the motion. ‡

Solution:

First to find the spring constant of proportionality, k,

use the formula k = mg

L
= 3

.25
= 12.

†Position compared to the equilibrium position.
‡Note that there is no external force.



No damping means γ= 0 and m = w

g
= 3

32

The initial displacement is u(0) =−1i n =− 1

12
f t

and the initial velocity is u′(0) = 2.


3

32
u′′+12u = 0

u(0) =− 1

12
u′(0) = 2

u(t ) = A cos(8
p

2t )+B sin(8
p

2t )

Using initial values: u(t ) =− 1

12
cos(8

p
2t )+ 1

4
p

2
sin(8

p
2t )

Oscillation is present to learn more about the oscilla-
tion, we find: The angular frequency is ω= 8

p
2



Amplitude of vibration is R =
√

1

122
+ 1

32
=

√
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288
' .195ft

Period:T = 2π

ω
= 2π

8
p
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Phase: δ= arctan

(
−

1
4
p
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)
+π'

−1.3+3.14 = 2.01 rad. So u =
√

11

288
cos(8

p
2t −2.01)



The free mechanical vibrations:*

Let


mu′′+γu′+ku = 0

u(0) = u0
u′(0) = u′

0

be the initial value problem

for a spring.

Where m is the mass, γ the damping constant and k

is the spring constant.

Also k = mg

L
where L is the elongation of the spring in

equilibrium position.

There are two cases involving γ:

1. γ= 0 The system is undamped.

*When the forcing function is zero and the vibration solely de-
pends on the initial values of the system. If damping exists,
then the solution asymptotically goes to zero as t →∞.



t

u
u = A cos(ω0t −δ)

2. γ 6= 0 then the system is damped.

Solve the initial value problem and notice that re-
garding the damping there are three cases:

(a) If mr 2+γr +k = 0 has complex conjugate roots
then system is under-damped.

t

u
y = e−0.3t cos(t −0.3)

(b) If mr 2+γr +k = 0 has repeated roots solution
then system is critically damped.



t

u
y = (1+2t )e−0.3t

t

u
y = (1−0.5t )e−0.3t

(c) If mr 2 +γr +k = 0 has two distinct roots then
system is over-damped.

t

u

y = e−0.3t +3e−0.1t

Now lets describe the movement of the spring in both
damped and undamped cases:



• Undamped Free Vibrations†

Free means there is no external force and we as-
sume the spring to be an ideal undamped spring,
then the differential equation becomes

mu′′+ku = 0

Since m and k are both positive, we get the com-
plex roots

mr 2+k = 0

Which has complex roots with λ= 0 and µ2 = k/m

ω2
0 = k/m. We call ω0 = p

k/m the natural fre-
quency of the system.

In particular, the solution for the undamped free
spring is

u = A cos(ω0t )+B sin(ω0t )

The natural frequency of the system is ω0 =
√

k

m

†Undamped is a limit of small damping as well.



Note that the frequency here is the angular fre-
quency and is different from the frequency of vi-
bration in 1 unit of time.

The period of the motion:

This is periodic motion with period

T = 2π

ω0

The motion can be written as u = R cos(ω0t −δ) .

The maximum displacement R of the mass from
equilibrium is the amplitude of the motion:

R =
√

A2+B2

The parameter δ is called the Phase or phase
angle and measures the displacement of the wave
from cos(ω0t ).

tanδ= B

A



Since the equation of the motion is u = R cos(ω0t −δ) ,
the spring is vibrating with the same amplitude
forever.

Caution: Choose the correct quadrant: sign of
sine should match sign of B. Sign of cosine should
match sign of A.

That is,

If A > 0, then δ= arctan
B

A
. If A < 0, then δ= arctan

B

A
±π .

y = R cos(ω0t −δ)

R
T

δ

ω0



• Damped Free Motion

If we do not ignore friction, then we get damped
free motion. The equation becomes

mu′′+γu′+ku = 0

The characteristic equation is

m2+γr +k = 0

The solution depends on the sign of γ2−4km. We
have the following three cases

1. γ2−4km < 0: The solution is

u = e−γt/2m(A cos(µt )+B sin(µt ))

Where µ=
√

4km −γ2

4m2
is the quasi frequency.

In this case the spring vibrates forever but the
magnitude of vibration gets closer and closer
to 0 in time ( Goes to zero as t →∞)

2. γ2−4km = 0: The solution is



u = (A+B t )e−γt/2m

In this case the spring reacts in the beginning
if the initial values are nonzero and then it gets
closer and closer to equilibrium “ asymptoti-
cally" as time passes (Goes to zero as t →∞)

3. γ2−4km > 0: The solution is

u = Aer2t +Ber1t

Where r1 and r2 are the real roots of the char-
acteristic equation. Notice that these roots are
both negative since

γ2−4km < γ2

In this case the spring does not even react in
the beginning. If the initial values are nonzero,
it gets closer and closer to equilibrium “asymp-
totically" as time passes. (Goes to zero as
t →∞)

Briefly, motion of a damped system can fall into
one of the following cases.



Let


mu′′+γu′+ku = 0

u(0) = u0
u′(0) = u′

0

be the initial value prob-

lem for a spring.

Solve the initial value problem and notice that re-
garding the damping there are three cases:

1. If mr 2+γr +k = 0 has complex conjugate roots
then system is under-damped.

In this case solve the equation to find the quasi-frequency
and refer to previous paragraph to describe the behav-
ior.

2. If mr 2+γr +k = 0 has repeated roots solution
then system is critically damped.

Solve to find the motion. Refer to the previous para-
graph for the behavior of the system.

3. If mr 2 +γr +k = 0 has two distinct roots then
system is over-damped.

Solve to find the motion. Refer to the previous para-
graph for the behavior of the system.



• Damped forced motion

Solve as any nonhomogeneous second order.

Transient solution is the homogeneous part and damp-
ing make it vanish over time.

Steady state solution is the particular solution that does not
vanish over time.

Resonance: When the forcing function has the same fre-
quency as the natural frequency of the sys-
tem:

mu′′+ku = F cos(ω0t ) (similarly mu′′+ku = F sin(ω0t ))

Where ω2
0 =

k

m
The solution to system starting at rest looks
like:

u = F t
2mω0

sin(ω0t ) Which is a resonance. Note
that the solution is indefinitely increasing.



t

u
y = .01t cos(t −0.3)

Beat mu′′+ku = F cos(ωt ). Where ω 6=ω0 =
√

k
m (the

natural frequency of the system).

In this case the solution to the system starting
at rest looks like:

u = 1

m(ω2
0−ω2)

(
cos(ωt )−cos(ω0t )

)
=

2

m(ω2
0−ω2)

si n
((ω0−ω)t

2

)
si n

((ω0+ω)t

2

)
In this phenomena the amplitude changes pe-
riodically. This is used in am ( amplitude mod-
ulation). It is only interesting when ω and ω1

are“close" in value.



t

u



Example:

A 16 pound weight stretches a spring 2 feet. The
medium through which the weight moves offers a re-
sistance equal to 4 times the velocity in ft/sec. Find the
position of the weight at any time t sec, if the weight
is released with zero velocity from one foot above the
equilibrium position. *

Solution:

Use the formula to find the spring constant of propor-

tionality k = 16

2
= 8 lb/ft

γ= 4 and m = 16

32
= .5 poundal mass

u(0) = 1 ft and u′(0) = 0 ft/sec

*This is an initial position.



Thus

{
.5u′′+4u′+8u = 0
u(0) = 1 u′(0) = 0

The characteristic equation has double root at r =−4

So the solution is u(t ) =C1e−4t +C2te−4t

u′=−4C1e−4t +C2(e−4t −4te−4t )

So the solution is u(t ) = e−4t +4te−4t .

Critically Damped



Example:

Repeat the above experiment with a medium that of-
fers resistance 3 times the velocity in ft/sec. Find the
quasi frequency and quasi period. What is the first
time that the spring goes to equilibrium position? At
what time does the amplitude of vibration become smaller
that 0.01ft?

Solution:

{
.5u′′+3u′+8u = 0
u(0) = 1 u′(0) = 0

The characteristic equation has double root at r =−3±p
9−16 =−3±p

7i

Then the general solution is u(t ) = C1e−3t cos(
p

7t )+
C2e−3t sin(

p
7t )



u(0) =C1 = 1 and u′=C1(−3e−3t cos(
p

7t )−p7e−3t sin(
p

7t ))+
C2(−3e−3t sin(

p
7t )+p

7e−3t cos(
p

7t ))

u′(0) =−3+p
7C2 = 0 so C2 = 3/

p
7

u(t ) = e−3t cos(
p

7t )+ 3p
7

e−3t sin(
p

7t )

The quasi frequency is µ=p
7 and the quasi period is

2πp
7

u(t ) = 4p
7

e−3t cos(
p

7t − .848)

The spring mass is going back to equilibrium first at
t = π/2+.848p

7

Use your calculator. Graph y = u(t ), y = 0.01 and y =
−0.01. Find the largest t-value where the curve inter-
sect either of the lines. That is, for all t > 1.65 |u(t )| <
.01


