Electrical Circuits

Consider a typical series RC circuit with voltage source $v(t)$. Let $i(t)$ denotes the current at time t and $q(t)$ denotes the charge.

Here R is the resistance in ohm (Ω) of the resistor and C is the capacitance in Farad of the capacitor.
$R, C, v(t)$ and the initial current $i(0)$ are given. The goal is to solve for $i(t)$, the current.

Remember from Physics:

Voltage drop across the resistor is $R * i(t)$.

Voltage drop across the capacitor is $\frac{1}{C} * q(t)$.

Voltage drop equation is: $R * i(t)+\frac{1}{C} * q(t)=v(t)$

Differentiate both sides to get an ode for $i(t)$:

$$
R * i^{\prime}(t)+\frac{1}{C} * i(t)=v^{\prime}(t)
$$

that R and C are constants.

This is another example of a linear ode and its standard form: $i^{\prime}(t)+\frac{1}{R C} i(t)=\frac{v^{\prime}(t)}{R}$

You can add an inductance L in Henry serial in that circuit to get :

$$
L * i^{\prime \prime}(t)+R * i^{\prime}(t)+\frac{1}{C} * i(t)=v^{\prime}(t)
$$

If we start with the circuit at rest, i.e. $i(0)=0$ and $i^{\prime}(0)=0$, one way is take the Laplace transform of the equation to get
$L * s^{2} I(s)+R * s I(s)+\frac{1}{C} * I(s)=s V(s)$
or $L s * I(s)+R * I(s)+\frac{1}{C s} * I(s)=V(s)$
The other method is to think of an inductance as an impedance of $L s$, a capacitance as an impedance of $\frac{1}{C s}$ and a resistance as an impedance R. This is, after performing Laplace transform on the circuit, the following circuit is obtained. Now we can solve the circuit using a a Kirchhoff type loop and impedance replacing resistance at each circuit component:

the questions can be set in the Laplace universe and the the inverse can be
One benefit of using Laplace transform is that found.

Example of Impulse force

Solve:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=2 \delta\left(t-\frac{\pi}{4}\right) \\
& y(0)=0 \\
& y^{\prime}(0)=0
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& Y(s)=\frac{2 e^{-\frac{\pi}{4} s}}{s^{2}+4} \\
& H(s)=\frac{2}{s^{2}+4} \text { so } h(t)=\sin (2 t) \\
& y(t)=\sin (2(t-\pi / 4)) u_{\pi / 4}(t)
\end{aligned}
$$

