Introduction to Laplace transform

Some Scattered Notes:

- An integral transform. (You will see)
- It sums up the entire behaviour of a function starting at time $t=0$ to infinity.
- It gives back an output that is somewhat equivalent to dissecting the function into different frequencies.
- Fourier transform is another integral transform that actually dissects into different frequencies.
- So in a way, Laplace transform vanishes time and signifies other properties of the function.

How Does it Work for IVPs?

Laplace operator transforms an ODE in $y(t)$ into a linear equation of $Y(s)=\mathscr{L}(y(t))$ without any derivatives. The after solving for $Y(s)$ in a linear equation in the s-universe, we take Laplace inverse to find $y(t)$.

Other than transforming a differential equation into a linear equation, the other significance of Laplace transform is that it facilitate working with certain discontinuities. Namely, it makes working with Heaviside and impulse function much easier.
*We denote $Y(s)=\mathscr{L}(y(t))$. Use capital letters in s universe and lower case in t universe. \mathscr{L} denotes Laplace transform. \mathscr{L}^{-1} denotes the inverse of Laplace transform.

The Laplace Transform of a function $y(t)$ is defined by:

$$
Y(s)=\mathscr{L}[y(t)](s)=\int_{0}^{\infty} e^{-s t} y(t) d t
$$

if the integral exists. $\mathscr{L}[y(t)](s)$ denotes the Laplace transform of $y(t)$. The functions $y(t)$ and $Y(s)$ are partner functions. Note that $Y(s)$ is a function of s only since the definite integral is with respect to t.

Note that f has to be of exponential order a, That is, $|f(t)| \leq k e^{a t}$ for some constant a, to make the improper integral convergent.

Examples: (We are building a table out of these examples.)

- Find $\mathscr{L}(1)$
$\mathscr{L}(1)=\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty}-\left.\frac{e^{-s t}}{s}\right|_{0} ^{b}=\frac{1}{s}$
- Find $\mathscr{L}\left(e^{t}\right)$

Let $y(t)=e^{t}$, then $Y(s)=\int_{0}^{\infty} e^{-s t} e^{t} d t=\int e^{-(s-1) t} d t=$ 1
$s-1$

The integral converges if $s>1$. The functions e^{t} and $\frac{1}{(s-1)}$ are partner functions.

- $\mathscr{L}\left(e^{a t}\right)=\frac{1}{s-a}$ for $s>a$.

This is similar to the previous statement.

- Find $\mathscr{L}(\cos (3 t))$.

Let $y(t)=\cos (3 t)$. We have
Method 1: Integration by parts twice:
$\int_{0}^{\infty} e^{-s t} \cos (3 t) d t=\left.\lim _{b \rightarrow \infty} \frac{1}{3} e^{-s t} \sin (3 t)\right|_{0} ^{b}-\left.\lim _{b \rightarrow \infty} \frac{s}{9} e^{-s t} \cos (3 t)\right|_{0} ^{b}-$
$\frac{s^{2}}{9} \int_{0}^{\infty} e^{-s t} \cos (3 t) d t$
Replace $\int_{0}^{\infty} e^{-s t} \cos (3 t) d t$ by I and use squeeze theorem:
$\mathbf{I}=\left.\lim _{b \rightarrow \infty} \frac{1}{3} e^{-s t} \sin (3 t)\right|_{t=0} ^{t=\hbar^{+0}}-\left.\lim _{b \rightarrow \infty} \frac{s}{9} e^{-s t} \cos (3 t)\right|_{0} ^{\hbar^{\frac{s}{9}}}-\frac{s^{2}}{9} \mathbf{I}$
then solve for I to get: $\mathrm{I}=\frac{s}{s^{2}+9}$. So

$$
Y(s)=\mathscr{L}(\cos (3 t))=\int_{0}^{\infty} e^{-s t} \cos (3 t) d t=\frac{s}{s^{2}+9}
$$

Convergent for $s>0$.

Method 2 :
By Euler identity \quad real $\left(e^{-s t+3 t i}\right)=e^{-s t} \cos (3 t)$.
$\int_{0}^{\infty} e^{-s t} \cos (3 t) d t=\operatorname{real}\left(\int_{0}^{\infty} e^{-s t+3 t i} d t\right)=$
$\operatorname{real}\left(\left.\lim _{b \rightarrow \infty} \frac{e^{-s t+3 i t}}{-s+3 i}\right|_{t=0} ^{t=b}\right)=\lim _{b \rightarrow \infty} \operatorname{real}\left(\left.\frac{e^{-s t+3 t i}}{-s+3 i}\right|_{t=0} ^{t=b}\right)=$
$\lim _{b \rightarrow \infty} \operatorname{real}\left(\frac{e^{-s b+3 b i}-1}{-s+3 i}\right)=$
$\lim _{b \rightarrow \infty} \operatorname{real}\left(\frac{(-s-3 i)\left(e^{-s b} \cos (3 b)+i e^{-s b} \sin (3 b)-1\right)}{s^{2}+9}\right)=$
$\lim _{b \rightarrow \infty} \frac{-s e^{-s b} \cos (3 b)+3 e^{-s b} \sin (3 b)+s}{s^{2}+9}=\frac{s}{s^{2}+9}$
So $\mathscr{L}(\cos (3 t))=\frac{s}{s^{2}+9}$

- Find $\mathscr{L}(t \cos (\alpha t))$.

Now let $y(t)=t \cos (\alpha t)$
$\mathscr{L}(t \cos (\alpha t))=\int_{0}^{\infty} t e^{-s t} \cos (\alpha t) d t$
Let's start with $\mathscr{L}(\cos (\alpha t))=\int_{0}^{\infty} e^{-s t} \cos (\alpha t) d t$
Take the derivative with respect to s and use Leibniz Rule of integration*

$$
\begin{aligned}
& \frac{\partial}{\partial s} \mathscr{L}(\cos (\alpha t))=\frac{\partial}{\partial s}\left(\int_{0}^{\infty} e^{-s t} \cos (\alpha t)\right) d t=\int_{0}^{\infty} \frac{\partial}{\partial s}\left(e^{-s t} \cos (\alpha t) d t\right) \\
& =-\int_{0}^{\infty} t e^{-s t} \cos (\alpha t) d t=\mathscr{L}(t \cos (\alpha t))
\end{aligned}
$$

So $\mathscr{L}(t \cos (\alpha t))=\frac{\partial}{\partial s} \mathscr{L}(\cos (\alpha t))=-\frac{\partial}{\partial s}\left(\frac{s}{s^{2}+\alpha^{2}}\right)=-\frac{a^{2}-s^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
So $\mathscr{L}(t \cos (\alpha t))=\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
*Next slide explains the Leibniz rule of integration.

Theorem If $f(t, s)$ is a function of two variable such that $f(t, s)$ and $f_{s}(t, s)$ are continuous on $a(s)<t<b(s)$ for s in an open interval. If $a(s)$ and $b(s)$ are both differentiable over that interval. Then
$\frac{\partial}{\partial s} \int_{a(s)}^{b(s)} f(t, s) d t=\int_{a(s)}^{b(s)} \frac{\partial f(t, s)}{\partial s} d t+f(b(s), s) b^{\prime}(x)-f(a(s), s) a^{\prime}(s)$
The theorem is discussing a more general form that we needed. Specifically, if a and b are constants, then the following hold and is called Leibniz Rule of integration:

$$
\frac{\partial}{\partial s} \int_{a}^{b} f(t, s) d t=\int_{a}^{b} \frac{\partial f(t, s)}{\partial s} d t .
$$

A Linear Operator

Remember that Laplace transform is an integral operator so it is a linear operator:

- $\mathscr{L}\left(f_{1}(t)+f_{2}(t)\right)=\mathscr{L}\left(f_{1}(t)\right)+\mathscr{L}\left(f_{2}(t)\right)$.
- $\mathscr{L}(r f(t))=r \mathscr{L}(f(t))$ where r is a constant.

Examples

- $\mathscr{L}(3)=3 \mathscr{L}(1)=\frac{3}{s}$.
- $\mathscr{L}\left(e^{-2 t}+5 e^{-3 t}\right)=\frac{1}{s+2}+\frac{5}{s+3}$
- $\mathscr{L}\left(\frac{1}{2} \cos (3 t)\right)=\frac{s}{2\left(s^{2}+9\right)}$
- $\mathscr{L}\left(\frac{1}{2} \sin (3 t)\right)=\frac{3}{2\left(s^{2}+9\right)}$
- $\mathscr{L}\left(\frac{1}{2} e^{2 t} \cos (3 t)\right)=\frac{s-2}{2\left((s-2)^{2}+9\right)}$

Step Functions and Heaviside

Let

$$
\begin{gathered}
f(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<1 \\
k & t=1 \\
0 & 1<t
\end{array}\right. \\
\mathscr{L}(f(t))=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{1} e^{-s t} d t=\left.\frac{-e^{-s t}}{s}\right|_{0} ^{1}=\frac{1-e^{-s}}{s}
\end{gathered}
$$

Heaviside is defined:
Let

$$
u_{c}(t)= \begin{cases}0 & t<c \\ 1 & c \leq t\end{cases}
$$

- Find $\mathscr{L}\left(u_{C}(t)\right)$.
$\mathscr{L}\left(u_{c}(t)\right)=\int_{0}^{\infty} u_{c}(t) e^{-s t} d t=\int_{c}^{\infty} e^{-s t} d t=\left.\lim _{b \rightarrow \infty} \frac{-e^{-s t}}{s}\right|_{c} ^{b}=$ $\frac{e^{-s c}}{s}$
- Find $\mathscr{L}\left(u_{c}(t) f(t-c)\right)$ for any $f(t)$ of "good" order type.

$$
\begin{aligned}
& \mathscr{L}\left(u_{c}(t) f(t-c)\right)=\int_{0}^{\infty} u_{c}(t) e^{-s t} f(t-c) d t= \\
& \int_{c}^{\infty} e^{-s t} f(t-c) d t=\int_{0}^{\infty} e^{-s u} e^{-s c} f(u) d u=e^{-s c} F(u)= \\
& e^{-s c} F(s)
\end{aligned}
$$

Using u-substitute $u=t-c$.

Comparing an step function with Heaviside:

$f(t)=u_{0}(t)-u_{1}(t)$ for $k=1$ and hence the steps can be made using the u functions. While finding Laplace transform, we can ignore a value of a function at one point. So the value k does not matter.

That is, Heaviside in engineering can be defined to be:

$$
u_{c}(t)= \begin{cases}0 & t<0 \\ k & c=t \\ 1 & c<t\end{cases}
$$

Piecewise Continuous : Domain of f can be partition into finite intervals where f is continuous and at points of discontinuity the limit is defined (the limits is not to infinity.)

Some examples of piecewise defined functions that can be built using the Heaviside steps:

$$
f(t)=\left\{\begin{array}{cc}
0 & t<0 \\
2 & 0 \leq t<3 \\
t-1 & 3 \leq t<5 \\
0 & 5 \leq t
\end{array}\right.
$$

$f(t)=2 u_{0}(t)-3 u_{3}(t)+t u_{3}(t)-t u_{5}(t)+u_{5}(t)$
Check: $2 u_{0}(t)+(t-3) u_{3}(t)+(-t+1) u_{5}(t)=$

$$
\left\{\begin{array}{cc}
0 & t<0 \\
2 & 0 \leq t<3 \\
2 & 3 \leq t<5 \\
2 & 5 \leq t
\end{array}+\left\{\begin{array}{cc}
0 & t<0 \\
0 & 0 \leq t<3 \\
t-3 & 3 \leq t<5 \\
t-3 & 5 \leq t
\end{array}+\left\{\begin{array}{cc}
0 & t<0 \\
0 & 0 \leq t<3 \\
0 & 3 \leq t<5 \\
-t+1 & 5 \leq t
\end{array}\right.\right.\right.
$$

Example:

- Find Laplace transform of
$2 u_{0}(t)+(t-3) u_{3}(t)+(-t+1) u_{5}(t)$
$\mathscr{L}\left(2 u_{0}(t)+(t-3) u_{3}(t)+(-t+1) u_{5}(t)\right)=$
$\mathscr{L}\left(2 u_{0}(t)+(t-3) u_{3}(t)+(-t+5-4) u_{5}(t)\right)=$
$\frac{2}{s}+\frac{e^{-3 t}}{s^{2}}+\frac{-e^{-5 t}}{s^{2}}-\frac{4 e^{-5 t}}{s}$

Existence of the Laplace Transform

If $y(t)$ is piecewise continuous for $t \geq 0$ and of exponential order, then the Laplace Transform exists for some values of s. A function $y(t)$ is of exponential order r if there is exist constants M and T such that
$|y(t)| \leq M e^{r t}$ where $t \geq T$
All polynomials, linear exponentials $e^{a t}$, where a is a constant), sine and cosine functions, and products of these functions are of exponential order.

An example of a function not of constant exponential order is $e^{t^{2}}$. This function grows too rapidly. The integral
$\int_{0}^{\infty} e^{-s t} e^{t^{2}} d t$
does not converge for any value of s.
The following table lists the Laplace Transforms for a selection of common functions.

Table of important Laplace transforms

$f(t)$	$\mathscr{L}(f(t))=F(s)$	
1	$\frac{1}{s}$	$s>0$
$e^{a t} f(t)$	$F(s-a)$	$s>a$
$e^{a t}$	$\frac{1}{(s-a)}$	$s>a$
$t e^{a t}$	$\frac{1}{(s-a)^{2}}$	$s>a$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$

Table of important Laplace transforms

$f(t)$	$\mathscr{L}(f(t))=F(s)$	
$u_{c}(t)$	$\frac{e^{-c s}}{s}$	$s>0$
$f(t-c) u_{c}(t)$	$e^{-c s} F(s)$	
$\delta(t)$	1	$s>0$
$\delta\left(t-t_{0}\right)$	$e^{-s t_{0}}$	
$\frac{d f(t)}{d t}$	$s F(s)-f(0)$	
$\frac{d^{n} f(t)}{d t^{n}}$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$	

Table of important Laplace transforms

$f(t)$	$\mathscr{L}(f(t))=F(s)$
$e^{a t} \sinh (b t)$	$\frac{b}{(s-a)^{2}-b^{2}}$
$e^{a t} \cosh (b t)$	$\frac{s-a}{(s-a)^{2}-b^{2}}$
$t \sin (b t)$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$
$t \cos (b t)$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$
$t \sinh (b t)$	$\frac{2 b s}{\left(s^{2}-b^{2}\right)^{2}}$
$t \cosh (b t)$	$\frac{s^{2}-b^{2}}{\left(s^{2}-b^{2}\right)^{2}}$

- Find $\mathscr{L}\left(e^{a t} f(t)\right)=F(s-a)$ for any $f(t)$ of order type r.
$\int_{0}^{\infty} e^{(-s+a) t} f(t) d t=\int_{0}^{\infty} e^{-u t} f(t) d t=F(u)=F(s-a)$

Using $u=s-a$.

- Find $\mathscr{L}\left(y^{\prime}(t)\right)$, when $y(0)=y_{0}$
$\int_{0}^{\infty} e^{-s t} y^{\prime}(t) d t=\left.\lim _{b \rightarrow \infty} e^{-s t} y(t)\right|_{0} ^{b}-\int_{0}^{\infty}(-s) e^{-s t} y(t) d t=$
$y(0)+s \mathscr{L}(y(t))$.

Using integration by parts where $u=e^{-s t}$ and $d v=$ $y^{\prime}(t) d t$.

So $\mathscr{L}\left(y^{\prime}(t)\right)=s \mathscr{L}(y(t))+y(0)=s Y(s)+y(0)$

Similarly, $\mathscr{L}\left(y^{(n)}(t)\right)=s^{n} Y(s)-s^{n-1} y(0)-\ldots-y^{(n-1)}(0)$.

Using n integration by parts.

Example

Find the Laplace transform of $y^{\prime \prime}+y^{\prime}-6 y=17 e^{-2 t} \cos (3 t)$, $y(0)=5, y(0)=7$ and solve for $Y(s)$.

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+s Y(s)-y(0)-6 Y(s)=\frac{17(s+2)}{(s+2)^{2}+9}
$$

$$
s^{2} Y(s)-5 s-7+s Y(s)-5-6 Y(s)=\frac{17(s+2)}{(s+2)^{2}+9}
$$

$$
Y(s)=\frac{5 s+12}{(s+2)^{2}+9}+\frac{17(s+2)}{\left[(s+2)^{2}+9\right]\left[s^{2}+s-6\right]}
$$

- The convolution integral:

$$
\begin{aligned}
& F(s) G(s)=\int_{0}^{\infty} e^{-s \xi} f(\xi) d \xi \int_{0}^{\infty} e^{-s \tau} g(\tau) d \tau \\
& =\int_{0}^{\infty} f(\xi) \int_{0}^{\infty} e^{-s(\xi+\tau)} g(\tau) d \tau d \xi=
\end{aligned}
$$

Change of the variable for $\tau=t-\xi$ where ξ is fixed:
$\int_{0}^{\infty} f(\xi) \int_{\xi}^{\infty} e^{-s t} g(t-\xi) d t d \xi$
Change the order of the integration:
$\int_{0}^{\infty} e^{-s t} \int_{0}^{t} g(t-\xi) f(\xi) d \xi d t$
So $F(s) G(s)=\int_{0}^{\infty} e^{-s t} \int_{0}^{t} g(t-\xi) f(\xi) d \xi d t$

- Dirac's delta. The unit impulse function which is zero everywhere except at time 0 which is large enough to have impart a pulse of size 1. (Impulse is the integral of force over time or the rate of change in momentum or if the forcing function is a current, the impulse represents voltage.
$d_{\Delta}(t-c)=\left\{\begin{array}{cc}\frac{1}{2 \Delta} & t \in(c-\Delta, c+\Delta) \\ 0 & t \notin(c-\Delta, c+\Delta)\end{array}\right.$
$\mathscr{L}(\delta(t-c))=\lim _{\Delta \rightarrow 0} \int_{0}^{\infty} e^{-s t} d_{\Delta}(t-c) d t=$
$\lim _{\Delta \rightarrow 0} \int_{c-\Delta}^{c+\Delta} \frac{1}{2 \Delta} e^{-s t} d t=\left.\lim _{\Delta \rightarrow 0} \frac{e^{-s t}}{-2 s \Delta}\right|_{c-\Delta} ^{c+\Delta}=$
$e^{-s c} \lim _{\Delta \rightarrow 0} \frac{\left(e^{-s \Delta}-e^{-2 s \Delta}\right)}{-2 s \Delta}=$

Use L'hospital to get : $e^{-s c}$

Each area is equal to one.

Note that impulse is infinite but the area under integral is limited.

$$
\int_{0}^{\infty} \delta(t-c) d t=1
$$

