The non-homogeneous linear equations are not going

 to be on the exam
Non-homogeneous linear systems of ode:

The systems of the form $\overrightarrow{x^{\prime}=A \vec{x}+\vec{g}(t) \text { or }}$

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
g_{1}(t) \\
g_{2}(t)
\end{array}\right]
$$

First step is to find the solutions to the homogeneous system $\vec{x}^{\prime}=A \vec{x}$. Then use one of the following methods to find the particular solution \vec{x}_{p}. (Again The variation of parameters works for any forcing function. But simple exponentials, sine, cosine and polynomial forcing functions only can be solved using undetermined coefficients.)

- Variation of parameters:

Let $\psi(t)$ be a matrix whose columns are the solution to the homogeneous system $\vec{x}^{\prime}=A \vec{x}$.
That is for distinct real roots λ_{1} and λ_{1} :

$$
\psi(t)=\left[\begin{array}{ll}
\xi_{1}^{1} e^{\lambda_{1} t} & \xi_{1}^{2} e^{\lambda_{2} t} \\
\xi_{2}^{1} e^{\lambda_{1} t} & \xi_{2}^{2} e^{\lambda_{2} t}
\end{array}\right]
$$

For repeated root λ :
$\psi(t)=\left[\begin{array}{ll}\xi_{1} e^{\lambda t} & \xi_{1} t e^{\lambda t}+\eta_{1} e^{\lambda t} \\ \xi_{2} e^{\lambda t} & \xi_{2} e^{\lambda t}+\eta_{2} e^{\lambda t}\end{array}\right]$
And for complex roots $\lambda=\mu \pm \omega i$:
$\psi(t)=\left[\begin{array}{ll}e^{\mu t}\left(\Re\left(\xi_{1}\right) \cos (\omega t)-\Im\left(\xi_{1}\right) \sin (\omega t)\right) & e^{\mu t}\left(\Re\left(\xi_{1}\right) \sin (\omega t)+\Im\left(\xi_{1}\right) \cos (\omega\right. \\ e^{\mu t}\left(\Re\left(\xi_{2}\right) \cos (\omega t)-\Im\left(\xi_{2}\right) \sin (\omega t)\right) & e^{\mu t}\left(\Re\left(\xi_{2}\right) \sin (\omega t)+\Im\left(\xi_{2}\right) \cos (\omega\right.\end{array}\right.$
Then since the columns are the solution to the homogeneous solution, $\psi(t)^{\prime}=A \psi(t)$. *
The method of variation of parameter relies on the fact that The particular solution to the nonhomogeneous system is $\vec{x}_{p}=\vec{x}_{h} \vec{u}(t)$ where \vec{u} is a vector.
To find \vec{u}, remember that $\psi(t)\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]$ can be plug in the nonhomogeneous solution and satisfy the equation:
$\left(\psi(t)\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]\right)^{\prime}=A\left(\psi(t)\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]\right)+\left[\begin{array}{l}g_{1}(t) \\ g_{2}(t)\end{array}\right]$
Use product rule on the left hand side to rewrite the equation:
$(\psi(t))^{\prime}\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]+\psi(t)\left(\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]\right)^{\prime}=(A \psi(t))\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]+\left[\begin{array}{l}g_{1}(t) \\ g_{2}(t)\end{array}\right]$
Using $*$, rewrite the equation again:

$$
\psi(t)\left(\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]\right)^{\prime}=\left[\begin{array}{l}
g_{1}(t) \\
g_{2}(t)
\end{array}\right] \quad \text { or } \quad \psi(t)\left(\left[\begin{array}{l}
u_{1}^{\prime}(t) \\
u_{2}^{\prime}(t)
\end{array}\right]\right)=\left[\begin{array}{l}
g_{1}(t) \\
g_{2}(t)
\end{array}\right](* *)
$$

So to solve for u_{1} and u_{2}, first solve for u_{1}^{\prime} and u_{2}^{\prime} in equation
(**) and then integrate.
Then $\vec{x}_{p}=\psi(t)\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$
The solution to the non-homogeneous system is

$$
\vec{x}=\vec{x}_{h}+\vec{x}_{p}=C_{1} \vec{x}_{h 1}+C_{2} \overrightarrow{x_{h 2}}+\vec{x}_{p}
$$

- Method of undetermined coefficients:

In this method depending on the functions that appear in the homogeneous solution make a modified guess " $x_{p 1}$ " for g_{1} and " $x_{p 2}$ " for g_{2}. Plug in the modified guesses into the nonhomogenous system to find the coefficients. Plug in the coefficients into the modified guesses to find the \vec{x}_{p}.
The solution to the non-homogeneous system is
$\vec{x}=\vec{x}_{h}+\vec{x}_{p}=C_{1} \overrightarrow{x_{11}}+C_{2} \overrightarrow{x_{h 2}}+\overrightarrow{x_{p}}$

Example:

$\overrightarrow{x^{\prime}}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \vec{x}+\left[\begin{array}{c}2 e^{t} \\ -e^{t}\end{array}\right]$

Solution

Using Variation of parameters:

- First find the solutions to the homogeneous equation $\vec{x}^{\prime}=$ $\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \vec{x}$
- $\left|\begin{array}{cc}1-\lambda & 1 \\ 4 & 1-\lambda\end{array}\right|=0$ to get $\lambda^{2}-2 \lambda-3=0$ to get $\lambda_{1}=-1$ and
- For $\lambda=-1$, solve $\left[\begin{array}{cc}1-(-1) & 1 \\ 4 & 1-(-1)\end{array}\right]\left[\begin{array}{l}\xi_{1}^{1} \\ \xi_{2}^{1}\end{array}\right]=\overrightarrow{0}$ to get $\left[\begin{array}{c}-\frac{1}{2} k \\ k\end{array}\right]$ and choose one eigen vector $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ (By setting $k=2$). So $\vec{x}_{h}^{1}(t)=\left[\begin{array}{c}-e^{-t} \\ 2 e^{-t}\end{array}\right]$ is the first solution.
- For $\lambda=3$, solve $\left[\begin{array}{cc}1-(3) & 1 \\ 4 & 1-(3)\end{array}\right]\left[\begin{array}{l}\xi_{1}^{2} \\ \xi_{2}^{2}\end{array}\right]=\overrightarrow{0}$ to get $\left[\begin{array}{c}\frac{1}{2} k \\ k\end{array}\right]$ and choose one eigen vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ (By setting $k=2$). So $\vec{x}_{h}^{2}(t)=\left[\begin{array}{c}e^{3 t} \\ 2 e^{3 t}\end{array}\right]$ is the second solution.
- So $\psi(t)=\left[\begin{array}{cc}-e^{-t} & e^{3 t} \\ 2 e^{-t} & 2 e^{3 t}\end{array}\right]$
- Use the $(* *)$ formula to set up: $\left[\begin{array}{cc}-e^{-t} & e^{3 t} \\ 2 e^{-t} & 2 e^{3 t}\end{array}\right]\left[\begin{array}{l}u_{1}^{\prime}(t) \\ u_{2}^{\prime}(t)\end{array}\right]=\left[\begin{array}{c}2 e^{t} \\ -e^{t}\end{array}\right]$
- In case of higher dimensions, I suggest using reduced form echelon form to solve for u_{1}^{\prime} and u_{2}^{\prime}. But for 2×2, I suggest using the inverse of $\psi(t)$ to solve for u_{1}^{\prime} and u_{2}^{\prime}.
- Remember $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a b-c d}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ so

$$
\begin{aligned}
& \psi(t)^{-1}=\frac{1}{\left(2 e^{3 t}\right)\left(-e^{-t}\right)-\left(2 e^{-t}\right)\left(e^{3 t}\right)}\left[\begin{array}{cc}
2 e^{3 t} & -e^{3 t} \\
-2 e^{-t} & -e^{-t}
\end{array}\right] \\
& =-\frac{1}{4} e^{-2 t}\left[\begin{array}{cc}
2 e^{3 t} & -e^{3 t} \\
-2 e^{-t} & -e^{-t}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} e^{t} & \frac{1}{4} e^{t} \\
\frac{1}{2} e^{-3 t} & \frac{1}{4} e^{-3 t}
\end{array}\right]
\end{aligned}
$$

- Now $\left[\begin{array}{l}u_{1}^{\prime}(t) \\ u_{2}^{\prime}(t)\end{array}\right]=\psi(t)^{-1}\left[\begin{array}{l}2 e^{t} \\ -e^{t}\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{2} e^{t} & \frac{1}{4} e^{t} \\ \frac{1}{2} e^{-3 t} & \frac{1}{4} e^{-3 t}\end{array}\right]\left[\begin{array}{l}2 e^{t} \\ -e^{t}\end{array}\right]=\left[\begin{array}{c}-\frac{5}{4} e^{2 t} \\ \frac{3}{4} e^{-2 t}\end{array}\right]$
- Integrate u_{1}^{\prime} and u_{2}^{\prime} to get u_{1} and u_{2} :

$$
\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\int-\frac{5}{4} e^{2 t} \\
d t \\
\int \frac{3}{4} e^{-2 t} d t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{8} e^{2 t} \\
-\frac{3}{8} e^{-2 t}
\end{array}\right]
$$

- Find the particular solution

$$
\vec{x}_{p}(t)=\psi(t)\left[\begin{array}{c}
-\frac{5}{8} e^{2 t} \\
-\frac{3}{8} e^{-2 t}
\end{array}\right]=\left[\begin{array}{cc}
-e^{-t} & e^{3 t} \\
2 e^{-t} & 2 e^{3 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{5}{8} e^{2 t} \\
-\frac{3}{8} e^{-2 t}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} e^{t} \\
-2 e^{t}
\end{array}\right]
$$

- The solution is $\vec{x}(t)=C_{1}\left[\begin{array}{c}-e^{-t} \\ 2 e^{-t}\end{array}\right]+C_{2}\left[\begin{array}{c}e^{3 t} \\ 2 e^{3 t}\end{array}\right]+\left[\begin{array}{c}\frac{1}{4} e^{t} \\ 4 \\ -2 e^{t}\end{array}\right]$

Now lets do the same example using the method of undetermined coefficients. $\vec{x}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \vec{x}+\left[\begin{array}{c}2 e^{t} \\ -e^{t}\end{array}\right]$

Solution

- Repeat the process in example above to find the the homogeneous solution:

$$
\vec{x}_{h}(t)=C_{1}\left[\begin{array}{c}
-e^{-t} \\
2 e^{-t}
\end{array}\right]+C_{2}\left[\begin{array}{c}
e^{3 t} \\
2 e^{3 t}
\end{array}\right]
$$

- Now the guess \vec{y}_{p} for $\left[\begin{array}{c}2 e^{t} \\ -e^{t}\end{array}\right]$ is $\vec{x}_{p}=\left[\begin{array}{c}A e^{t} \\ B e^{t}\end{array}\right]$ since all entries of $g \overrightarrow{(t)}$ are "different" functions from the entries of $\vec{x}_{h}(t)$.
- Take the derivative of the guess. In this case: $\vec{x}^{\prime}{ }_{p}=\left[\begin{array}{c}A e^{t} \\ B e^{t}\end{array}\right]$
- Plug in the system.

$$
\left[\begin{array}{c}
A e^{t} \\
B e^{t}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
A e^{t} \\
B e^{t}
\end{array}\right]+\left[\begin{array}{c}
2 e^{t} \\
-e^{t}
\end{array}\right]
$$

That is

$$
\left[\begin{array}{c}
A e^{t} \\
B e^{t}
\end{array}\right]=\left[\begin{array}{c}
A e^{t}+B e^{t} \\
4 A e^{t}+B e^{t}
\end{array}\right]+\left[\begin{array}{c}
2 e^{t} \\
-e^{t}
\end{array}\right]
$$

That is, $\left[\begin{array}{l}A e^{t} \\ B e^{t}\end{array}\right]=\left[\begin{array}{l}A e^{t}+B e^{t}+2 e^{t} \\ 4 A e^{t}+B e^{t}+e^{t}\end{array}\right]$
Subtract the left-hand side from both side of the equation:
$\left[\begin{array}{l}B e^{t}+2 e^{t} \\ 4 A e^{t}-e^{t}\end{array}\right]=\overrightarrow{0}$

- That is $\left[\begin{array}{c}(B+2) e^{t} \\ (4 A-1) e^{t}\end{array}\right]=\overrightarrow{0}$
- $B+2=0$ and $4 A-1=0 B=-2$ and $A=\frac{1}{4}$
- The solution is $\vec{x}(t)=C_{1}\left[\begin{array}{c}-e^{-t} \\ 2 e^{-t}\end{array}\right]+C_{2}\left[\begin{array}{c}e^{3 t} \\ 2 e^{3 t}\end{array}\right]+\left[\begin{array}{c}1 \\ \frac{1}{4} e^{t} \\ -2 e^{t}\end{array}\right]$

